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1 Introduction

The mathematics of decision making is very closely tied to the field of mathemat-
ical optimization. One of the primary ways mathematics is used to help guide
decisions is by maximizing (or minimizing) specific outcomes subject to a list of
constraints. Mathematical optimization provides the formal tools to model and
solve such problems.

There are many kinds of mathematical optimization. There are two basic types
depending on whether the variables to optimize or discrete or continuous. A few
types of optimization are1

• Linear Programming,

• Integer Programming,

1“Program” is not a computer program but comes from the United States military’s use of the
word for training and logistics schedules.
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• Stochastic programming,

• Combinatorial optimization,

• Dynamic programming.

Unsurprisingly there are many real-world applications; to list a few we have
network optimization, pricing strategy, scheduling, supervised machine learning
training, supply chain optimization, and transportation problems.

In this module, we will introduce the fundamentals of linear programming,
also called linear optimization and operations research, such as the simplex method,
polyhedral geometry, and the notion of duality. Depending on the time, we may
also delve into integer programming.

1.1 History

Mathematical optimization has quite an interesting history. In the 17th century,
combinatorial optimization problems were solved using game theory, combina-
torics, and ad hoc methods. In the 19th century, transportation problems involv-
ing post and rail were studied and solved. And in the 20th century with the two
World Wars and rise of the assembly line, operations research took off developing
the mathematics for all kinds of optimization problems.

One of the most influential figures in mathematical optimization, and linear
programming in particular, is George Dantzig. He was the recipient of the Presi-
dent’s National Medal of Science in 1975 [3] and was credited for

inventing linear programming and discovering methods that led to wide-
scale scientific and technical applications to important problems in logistics,
scheduling, and network optimization, and to the use of computers in making
efficient use of the mathematical theory.

The proof of the simplex method, name coined by Motskin, was developed by
Dantzig in the late 1940s [2]. I find it interesting that the “inductive proof of
the simplex method” was published by the Mathematics Division of the RAND
Corporation in 1960 (by Dantzig) and was made classified [1]. Now, of course, it
is no longer classified.

After explaining the Simplex Method to John von Neumann at the Institute
of Advanced Study in Princeton during 1948, von Neumann immediately conjec-
tured the notion of duality because of his recent foray into game theory.

1.2 Four examples

We describe four example problems that touch on the tools we will develop in
this module. For now, these problems are meant to introduce basic concepts and
vocabulary.

2



1.2.1 A diet problem

Erin is planning her breakfast and wants to make oats with milk. (These numbers
of simplified and not accurate to real life.)

Milk (100ml) Oats (100g)
fat 2g 3g

carbohydrates 1g 3g
protein 4g 3g

Erin wants the meal to provide at least 18g of fat, at least 12g of carbohydrates,
and at least 24g of protein. If milk costs 20 cents per 100ml and oats 25 cents per
100g, what mixture minimizes the cost of the desired meal?

We could express this more mathematically. For example, let x and y be vari-
ables such that x = 1 means 100ml of milk and y = 1 means 100g of oats. Calcu-
lating the grams of fat relative to x and y is

2x + 3y.

For carbohydrates it is x + 3y, and for protein it is 4x + 3y. Because we want at
least 18g of fat, we express this via

2x + 3y ⩾ 18.

We can set up similar inequalities for the other two:

2x + 3y ⩾ 18,
x + 3y ⩾ 12,

4x + 3y ⩾ 24.

Since we cannot have negative amounts of milk or oats, we have x ⩾ 0 and y ⩾ 0.
Since we want to minimize costs, we want to minimize

C = 0.2x + 0.25y.

Putting all of this together, we have the following optimization problem.

Determine values for x and y that minimize

C = 0.2x + 0.25y

subject to the constraints: x ⩾ 0, y ⩾ 0, and

2x + 3y ⩾ 18,
x + 3y ⩾ 12,

4x + 3y ⩾ 24.
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1.2.2 A transportation problem

Javier has two production sites: one in Sligo and another in Kilkenny. There
are three distributing warehouses in Dublin, Galway, and Cork. The Sligo site
can supply 120 products per week, whereas the site in Kilkenny can supply 140
per week. The warehouses in Dublin, Galway, and Cork need 100, 60, and 80
products per week respectively to meet demand. The shipping costs are giving
in the following table.

Dublin Galway Cork
Sligo 5 7 9

Kilkenny 6 7 10

How many products should Javier ship from each production site to minimize
total shipping costs while still meeting demand?

We need many variables, so let’s define a variable for each shipment—for ex-
ample, from Kilkenny to Dublin. Write them as

xkd, xkg, xkc, xsd, xsg, xsc.

Since Kilkenny and Sligo can only produce 140 and 120 products, respectively,
we have

xkd + xkg + xkc ⩽ 140,

xsd + xsg + xsc ⩽ 120.

We need to meet demands, so we have

xkd + xsd ⩾ 100,
xkg + xsg ⩾ 60,

xkc + xsc ⩾ 80.

Lastly, we want to minimize cost, so we want to minimize

C = 6xkd + 7xkg + 10xkc + 5xsd + 7xsg + 9xsc.

Altogether we have the following linear program.

Minimize

C = 6xkd + 7xkg + 10xkc + 5xsd + 7xsg + 9xsc

subject to the constraints: xij ⩾ 0 for all i and j and

xkd + xkg + xkc ⩽ 140,

xsd + xsg + xsc ⩽ 120,
xkd + xsd ⩾ 100,
xkg + xsg ⩾ 60,

xkc + xsc ⩾ 80.
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1.2.3 The travelling salesperson problem

Kofi need to deliver n products in n different cities starting in Paris. He wants to
do this by visiting each city exactly one time and then returning back to Paris at
the end. Which path minimizes the distance traveled?

This problem is perhaps the most famous combinatorial optimization problem
and is the core problem of many other more complex problems. We will not do
much more with this, but note that different “distance functions” can allow for
all kinds of slow-downs and speed-ups.

1.2.4 A financial problem

Julia runs an investment and must invest exactly ¤100,000 in two types of securi-
ties: bond A paying a dividend of 7% and stock B paying a dividend of 9%. Due
to her incredible experience, she knows that

• no more than ¤40,000 can be invested in stock B and

• the amount invested in bond A must be at least twice that in stock B.

How much should Julia invest in each security to maximize her return?
See if you can get the following set up.

Maximize

z = 0.07A + 0.09B

subject to the constraints: A ⩾ 0, B ⩾ 0, and

A + B = 100000,
B ⩽ 40000,
A ⩾ 2B.

2 General linear programming

Linear programs are the basis of what we consider throughout this module. In
the example problems above, we sometimes wanted to maximize and sometimes
we wanted to minimize. Although these are technically different, we can treat
them as the same. Suppose f is some function we want to maximize. Then

max( f ) = −min(− f ).

So maximizing f is the same as minimizing − f . Thus, we can use the two
interchangeably—as long as we correctly compensate!

General linear program
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Determine values for x1, x2, . . . , xn that maximize

z = c1x1 + c2x2 + · · · cnxn

subject to the constraints:

a11x1 + a12x2 + · · ·+ a1nxn □ b1,
a21x1 + a22x2 + · · ·+ a2nxn □ b2,

...
...

...
... □

...
am1x1 + am2x2 + · · ·+ amnxn □ bm,

where each of the □ can be replaced with one of {=,⩽,⩾}.

Definition 2.1. A linear program (LP) problem is a problem of the form above.
The function z is called the objective function, and the m (in-)equalities are called
the constraints.

A key feature of LPs is that the objective function as well as each of the con-
straint (in-)equalities are linear in the x1, x2, . . . , xn.

2.1 Standard form

Can we play around with the constants aij and bk to get all of the (in-)equalities
into the same “shape”? For example,

4x1 − 5x2 − x3 ⩾ 1

is equivalent to
−4x1 + 5x2 + x3 ⩽ −1.

Thus, if we have an inequality, we can force it to use just ⩽. Moreover, if we have
an equality, we can use two inequalities to obtain the same solutions:

4x1 − 5x2 − x3 = 1 is equivalent to

{
4x1 − 5x2 − x3 ⩾ 1 and
4x1 − 5x2 − x3 ⩽ 1

So we can transform equalities to inequalities, but what about the other way
around? We will look at this soon.

In some examples, variables only took on non-negative values. This actually
has an advantage of constraining the possible values of the variables, and it is
something we will come back to later on. But what about situations were vari-
ables are allowed to have negative values? Suppose xi can be negative. We can
introduce two new variables, say, x+i and x−i , and we can rewrite xi as follows:

xi = x+i − x−i .

In this way, xi can be negative while both x+i and x−i are non-negative. Thus, we
can replace all instances of xi with x+i − x−i , so that all variables take non-negative
values.

Now we can define the standard form for an LP.
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Linear program standard form

Determine values for x1, x2, . . . , xn that maximize

z = c1x1 + c2x2 + · · · cnxn

subject to the constraints: for all i ∈ {1, . . . , n}, xi ⩾ 0 and

a11x1 + a12x2 + · · ·+ a1nxn ⩽ b1,
a21x1 + a22x2 + · · ·+ a2nxn ⩽ b2,
...

...
...

...
...

am1x1 + am2x2 + · · ·+ amnxn ⩽ bm.

Example 2.2. The following LP is not in standard form.

Determine values for x and y that minimize

z = 3x + 2y

subject to the constraints: x ⩾ 0, y ⩾ 0, and

2x + y ⩽ 4
3x − 2y ⩽ 6.

We can put it into standard form as follows.

Determine values for x and y that maximize

z = −3x − 2y

subject to the constraints: x ⩾ 0, y ⩾ 0, and

2x + y ⩽ 4
3x − 2y ⩽ 6.

Example 2.3. Put the following LP into standard form.

Determine values for x and y that minimize

z = −4x + y

subject to the constraints:

x − 3y = 2,
x + y ⩽ 6.
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2.2 Canonical form

The canonical form is slightly different to that of the standard form of an LP.

Linear program canonical form

Determine values for x1, x2, . . . , xs that maximize

z = c1x1 + c2x2 + · · · csxs

subject to the constraints: for all i ∈ {1, . . . , s}, xi ⩾ 0 and

a11x1 + a12x2 + · · ·+ a1sxs = b1,
a21x1 + a22x2 + · · ·+ a2sxs = b2,
...

...
...

...
...

ar1x1 + ar2x2 + · · ·+ arsxs = br.

Proposition 2.4. Every LP in standard form can be brought into canonical form. In
other words, every LP has an associated LP in canonical form.

Week 1

Proof. Since we have already convinced ourselves that every LP can be brought
into standard form, it suffices to show that we can convert every LP in standard
form into canonical form.

The only difference between the two forms are in the constraints; namely, we
need to convert an inequality of the form

a1x1 + · · ·+ anxn ⩽ b (2.1)

to an equality. To accomplish this, we introduce slack variables—these are just
variables with a pretentious title. They simply exist to “pick up the slack”. The
“slack” is just the difference of the right hand side and the left hand side of (2.1).

Let s be a (slack) variable. Then (2.1) is equivalent to

s ⩾ 0,
a1x1 + · · ·+ anxn + s = b.

Hence, we can introduce a new variable for each inequality and obtain an LP in
canonical form.

Example 2.5. A tailor is producing jumpers and trousers. They first need to cut
the fabric and then sew it together. It takes 2 hours to cut the fabric for either
a pair of trousers or a jumper. It takes 5 hours to sew a pair of trousers and 3
hours for a jumper. Scissors can be used for 8 hours per day, wheres the sewing
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machine can be used for 15 hours per day. If a pair of trousers is sold for ¤120
and a jumper for ¤100, how many of each should be made to maximize revenue?
(Let’s ignore demand.)

Write an LP in canonical form for this scenario.

Maximize

z = 100J + 120T,

subject to J, T, s1, s2 ⩾ 0 and

2J + 2T + s1 = 8,
3J + 5T + s2 = 15.

2.3 Matrix notation

Instead of writing out all of the constraints and all the terms of the objective func-
tion, we can compactly describe the same data using matrices. Define

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

... . . . ...
am1 am2 · · · amn

 , x =


x1
x2
...

xn

 , b =


b1
b2
...

bm

 , c =


c1
c2
...

cn

 .

We use the relations ⩽ and ⩾ like we do with = when applied to vectors, that
is, they are determined coordinate wise. For example[

1
4

]
⩽

[
2
5

]
,

[
2
3

]
̸⩽

[
5
1

]
.

In symbols, x ⩽ y if and only if xi ⩽ yi for all i.

LP standard form (matrices)

For A ∈ Matm×n(R), b ∈ Rm, and c ∈ Rn, maximize

z = c⊤x

subject to x ⩾ 0 and

Ax ⩽ b.

Notation 2.6. The letter n is the number of variables in the objective function, and
m is the number of inequalities separate from x ⩾ 0.

If it is not already clear how to convert all the previous example above into
the matrix form, try to work this out yourself.
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Definition 2.7. A vector x ∈ Rn satisfying all the constraints of an LP (in standard
form) is a feasible solution.

Example 2.8. Recall Example 2.5 the “sewing problem”. The following vectors
are all feasible solutions: [

0
0

]
,
[

4
0

]
,
[

0
π

]
,
[

1
2

]
.

The following vectors are not feasible solutions:[
−1
0

]
,
[

5
0

]
,
[

0
4

]
,
[

2
2

]
.

Definition 2.9. A feasible solution that maximizes the objective function of an LP
is an optimal solution.

Now we describe the corresponding matrix form for the canonical form of an
LP. It is built from the standard form of an LP. We write In ∈ Matn(R) for the
identity matrix. For matrices A, B ∈ Matm×n(R), we set

[
A | B

]
=

 a11 · · · a1n b11 · · · b1n
... . . . ...

... . . . ...
am1 · · · amn bm1 · · · bmn

 ∈ Matm×2n(R).

LP canonical form (matrices)

For A ∈ Matm×(n+s)(R), b ∈ Rm, and c ∈ Rn+s, maximize

z = c⊤x,

subject to x ⩾ 0 and

Ax = b,

where c⊤ = (c1, . . . , cn, 0, . . . , 0) and x⊤ = (x1, . . . , xn, . . . , xn+s).

One can take an LP in standard form and construct one in canonical form with
the (main) constraint equation: [

A | Im
]

x = b.

Exercise 1. Show that a feasible solution for an LP in standard form induces a
feasible solution in canonical form. Is the converse true?

10



2.4 Geometry of the feasibly set

Now we begin our analysis of the set of feasible solutions to an LP. We begin by
looking at the features of its geometry.

Example 2.10. Let’s consider the standard form of the LP in Example 2.5. In
particular, the feasible solutions are constrained by J, T ⩾ 0 and

2J + 2T ⩽ 8,
3J + 5T ⩽ 15.

We can plot the region in R2 as follows:

J

T

J + T = 4

3J + 5T = 15

Let’s consider one of our constraint inequalities:

ai1x1 + · · ·+ ainxn ⩽ bi.

This can be compactly written as a⊤x ⩽ bi for a ∈ Rn and bi ∈ R. The equation

a⊤x = bi

defines a hyperplane in Rn: the vector a describes the “slope” and the scalar bi
describes how far the hyperplanes shifts away from the origin. The hyperplane
a⊤x = bi is the boundary of the set of solutions to a⊤x ⩽ bi. In R2, hyperplanes
are lines, and in R3 they are planes.

Hyperplanes H in Rn partition Rn into three sets: the points “below” H, the
points “above” H, and the points on H. The set of points below H define a half-
space, and similarly for the set of points above H. More precisely, if

H = {x ∈ Rn | a⊤x = b},

then both

H+ = {x ∈ Rn | a⊤x > b},

H− = {x ∈ Rn | a⊤x < b}

are half-spaces of Rn. The closed half-spaces are

H+ = {x ∈ Rn | a⊤x ⩾ b} = H+ ∪ H,

H− = {x ∈ Rn | a⊤x ⩽ b} = H− ∪ H.
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x1

x2

Figure 2.1: The line given by a = (−1, 2), b = 1 in blue, and the line with a =
(−1, 2), b = 0 is in red.

Example 2.11. The sets

X = {x ∈ R4 | −x1 − 4x2 + sin(1)x3 ⩽ π}
Y = {y ∈ R4 | 7y1 + 7y2 + 7y3 + 7y4 = 2},

Z = {z ∈ R4 | −8z1 + 4z2 − 2z3 + z4 > 0}

respectively define a closed half-space, hyperplane, and half-space in R4.

What does this have to do with LPs? Our constraint inequalities define closed
half-spaces, and if we want to look at the set of feasible solutions, such points
must satisfy all inequalities. Geometrically, the feasible solutions are contained in
the intersection of all of the close half-spaces, and every point in this intersection
must therefore be a feasible solution since it satisfies all of the constraints. All
of this implies that the set of feasible solutions is a finite intersection of closed
half-spaces.

Example 2.12. The following are the constraints for some LP and the correspond-
ing set of feasible solutions.

x, y, z ⩾ 0,
5x + 3y + 5z ⩽ 15,

10x + 4y + 5z ⩽ 20.

x

y

z

But wait, there’s more! The objective function in an LP in standard form is
linear:

z = c⊤x.

We rephrase the LP in the following way.
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Hyperplanes all the way down

Find the largest k ∈ R such that

c⊤x = k

subject to x ⩾ 0 and

Ax ⩽ b.

Example 2.13. Let’s bring in the objective function from the sewing problem in
Example 2.5. We want to maximize

z = 100J + 120T.

Instead, let’s plot a number of hyperplanes (i.e. lines) of the form

100J + 120T = k

for different values of k. We use the feasibility region plotted in Example 2.10.

J

T

k = 0 k = 200 k = 400

We can see the optimal solution to the sewing problem.

Example 2.14. Consider the following LP.

Maximize

z = 2x + 5y

subject to x, y ⩾ 0 and

−3x + 2y ⩽ 6,
−x − 2y ⩽ −2

Does the LP have an optimal solution? Let’s plot the feasible solutions and a
few hyperplanes of the form 2x + 5y = k.
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x

y

k = 10

k = 20

k = 30

Note that the feasible solutions are not bounded—more on this later. No matter
how large a k we get, we can always find feasible solutions that yield a larger k.
Hence, there is no optimal solution.

Example 2.15. We take the LP from Example 2.14 and change the objective func-
tion slightly. Does it have an optimal solution?

Minimize

z = 3x + 5y

subject to x, y ⩾ 0 and

−3x + 2y ⩽ 6,
−x − 2y ⩽ −2

Again, we’ll just plot it.

x

y

k = 5

k = 10

k = 20

k = 30

There is an optimal solution. It occurs at (0, 1) where z = 5.

Definition 2.16. A set S ⊆ Rn is bounded if there exists r > 0 such that for all
u, v ∈ S the Euclidean distance d(u, v) ⩽ r.
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Note the order of quantifiers in Definition 2.16! Informally speaking, a set is
bounded if we can wrap it in a ball (of finite radius). Are feasible solutions always
bounded? Unbounded?

2.5 Convexity

Let’s look at some of the feasible solutions we have plotted so far.

J

T

x

y

x

y

z

Figure 2.2: Three sets of feasible solutions

These regions have the property that if one takes two points in that region,
say u and v, then all of the points on the line segment between u and v are also in
that region. This is not true of all sets in Rn; can you draw an example?

The formula for the line segment between points u and v is

Lu,v(t) = vt + (1 − t)u

where t ∈ [0, 1]. Note that at the endpoints, we have

Lu,v(0) = u, Lu,v(1) = v.

In the middle, we have points like Lu,v(1/2) = (u + v)/2 and Lu,v(1/5) = (4u +
v)/5.

Definition 2.17. A set S ⊆ Rn is convex if it contains all points on all line segments
between every pair of points in S. In symbols, this means that for all u, v ∈ S,

{Lu,v(t) | t ∈ [0, 1]} ⊆ S.

Proposition 2.18. The feasible set of solutions of an LP forms a convex set.

Week 2

Try to prove Proposition 2.18 yourself. Consider first proving that closed half-
spaces are convex.

Let’s consider two distinct feasible solutions u and v to an LP. We have two
cases: either they take the same value in the objective function or they have dif-
ferent values. Assume the first, that is, suppose

c⊤u = c⊤v.
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What can we say about the values of the points on the line segment Lu,v? Let
w = vt + (1 − t)u for some t ∈ [0, 1]. Then

c⊤w = c⊤(tv + (1 − t)u)

= c⊤tv + c⊤(1 − t)u

= tc⊤v + c⊤u − tc⊤u

= c⊤u.

Hence, all points on the Lu,v have the same value under the objective function.
Let’s consider the second case, that is, the values are distinct. Assume that

c⊤u < c⊤v,

and suppose w = tv + (1 − t)u for some t ∈ [0, 1]. Some of the same analysis
applies in this case: namely,

c⊤w = tc⊤v + c⊤u − tc⊤u

= c⊤u + t(c⊤v − c⊤u).

Therefore, for all t ∈ [0, 1], we have

c⊤u ⩽ c⊤w ⩽ c⊤v.

Hence, the endpoint of Lu,v have the extreme values.
We summarize all of this in the following proposition.

Proposition 2.19. Let S be the set of feasible solutions to an LP. If L ⊆ S is a line
segment, then one of the following holds.

1. The objective function is constant on L.

2. The endpoints of L are the extreme points under the objective function.

2.6 Convex polyhedra

We briefly leave the world of linear optimization and discuss some polyhedral
geometry.

Definition 2.20. A convex polyhedron is a finite intersection of closed half-spaces
in Rn.

Examples include regular polygons in R2, infinite cone in R2, and the platonic
solids in R3. As we have discussed before, the set of feasible solutions of an
LP are, therefore, convex polyhedra. Some non-examples include balls in every
dimension and any non-convex set.

Definition 2.21. A point x ∈ Rn is a convex combination of points t1, . . . , tr ∈ Rn

if there exist λ1, . . . , λr ∈ [0, 1], with λ1 + · · ·+ λr = 1, such that

x = λ1t1 + · · ·+ λrtr.
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x

y

x

y

Figure 2.3: Two convex sets

Example 2.22. The point (2, 1, 0)⊤ is a convex combination of4
4
2

 ,

 0
−4
0

 ,

 0
0
−4

 .

Take (λ1, λ2, λ3) = (1/2, 1/4, 1/4).

The reason for the name “convex combination” is that the set of points that
are convex combinations of a set of points is convex.

Definition 2.23. A point x in a convex set S ⊆ Rn is extreme if for every line
segment in S, the point x is not in the interior.

Example 2.24. In Figure 2.3, one of the convex sets has infinitely many extreme
points, and the other has exactly three. Which is which?

Proposition 2.25. Let S ⊆ Rn be convex. A point x ∈ S is extreme if and only if x is
not a convex combination of other points in S.

We won’t prove Proposition 2.25.

2.7 Extreme point theorem

We state and prove some of the fundamental theorems in the theory of linear
optimization.

Theorem 2.26 (Extreme points of an LP). Let S be the set of feasible solutions to an
LP.

(1) If S is non-empty and bounded, then an optimal solution exists and occurs as an
extreme point of S.

(2) If S is non-empty, unbounded, and contains an optimal solution, then the optimal
solution occurs as an extreme point of S.
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(3) If an optimal solution does not exist, then either S is empty or unbounded.

Proof sketch. A subset of Rn is compact if and only if it is closed and bounded
(Heine–Borel Theorem). Continuous real-valued functions on compact sets have
a global maximum (fact from metric spaces or topology). The seat of feasible
solutions form a convex polyhedron. By Proposition 2.25, an optimal solution is
an extreme point.

Example 2.27. Show that the following LP has infinitely many optimal solutions
for f (x, y) = 4x + 4y. Show that for f (x, y) = 4x + y there is a unique optimal
solution.

Maximize:

z = f (x, y),

subject to the constraints: x, y ⩾ 0 and

−2x − y ⩽ −2,
x − y ⩽ 2,
x + y ⩽ 3.

The plot of this LP looks like the following.

x

y

The extreme points are given by

{(1, 0), (2, 0), (5/2, 1/2), (0, 2), (0, 3)}.

With f (x, y) = 4x + 4y, the values are 4, 8, 12, 8, 12, respectively. Therefore, all
points on the line segment between (0, 3) and (5/2, 1/2) are optimal solutions.
If, instead, f (x, y) = 4x + y, then the values are 4, 8, 10.5, 2, 3. Hence, we have a
unique optimal solution at (5/2, 1/2).

Note that we had infinitely many optimal solutions when the line determined
by f (x, y) = 0 was parallel to one of our constraints—the converse is not true in
general: try f (x, y) = 4x + 2y, which is parallel to the first constraint.
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Example 2.27 is simple because we can visualize fairly easily all of the ex-
treme points. In fact, all extreme points for an LP with two variables occur at
intersections of lines, which are easy to handle. Without some additional tools,
it is not an easy task to find extreme points of higher-dimensional LPs. The next
two theorems provide a roadmap to find these extreme points.

Theorem 2.28. Suppose we have an LP in canonical form with constraints x ⩾ 0 and
Ax = b for some A =

[
a1 a2 · · · an+s

]
∈ Matm×n+s(R). Assume that

• the first m columns of A, i.e. {a1, . . . , am}, are linearly independent, and

• for some x′1, . . . , x′m ⩾ 0, we have x′1a1 + · · ·+ x′mam = b.

Then the following is an extreme point of the set of feasible solutions:

(x′1, . . . , x′m, 0, . . . , 0).

Proof. By assumptions, we know that x = (x′1, . . . , x′m, 0 . . . , 0) is feasible. We
need to show it is extreme. Assume x is not extreme, so there exists feasible
points u, v ∈ Rm and t ∈ (0, 1) such that

x = tv + (1 − t)u.

This implies that for all i ∈ m + 1, . . . , n + s and all j ∈ {1, . . . , m} we have

tvi + (1 − t)ui = 0,

tvj + (1 − t)uj = x′j.

Since t ∈ (0, 1) and ui, vi ⩾ 0, it follows that ui = 0 = vi for i ∈ {m+ 1, . . . , n+ s}.
As u is feasible, Au = b. Since um+1 = · · · = un+s = 0, we have

u1a1 + · · ·+ umam = b.

By our assumptions, uj = x′j for all j ∈ {1, . . . , m}, which is a contradiction.
Hence, x is extreme.

Theorem 2.29. Suppose we have an LP in canonical form. If x is an extreme point of the
set of feasible solutions, then the columns of A corresponding to positive coordinates of x
form a set of linearly independent vectors of Rm.

Week 3

Proof. Reorganize the variables so that the first k coordinates of x are positive and
all others zero. Thus,

x′1a1 + · · ·+ x′kak = b.

Suppose that {a1, . . . , ak} is linearly dependent, so there exist scalars such that

λ1a1 + · · ·+ λkak = 0,
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where not all λ1, . . . , λk are zero. Therefore, we have two feasible solutions:

u = (x′1 − λ1, . . . , x′k − λk, 0 . . . , 0), v = (x′1 + λ1, . . . , x′k + λk, 0 . . . , 0).

Moreover x = Lu,v(1/2), contradicting the fact that it is extreme. Hence, the set
{a1, . . . , ak} is linearly independent.

So from Theorem 2.29, the columns of A corresponding to positive entries of
an extreme point x (contained in the set of feasible solutions to an LP in canonical
form) are linearly independent. Since they exist in Rm, and we cannot have more
than m linearly independent vectors in Rm, we have the following corollary to
Theorem 2.29.

Corollary 2.30. At most m entries of an extreme point can be positive. The rest are zero.

Given an LP in canonical form with constraint matrix A ∈ Matm×s(R) where
s ⩾ m, we can select subsets of m columns of A that are linearly independent to
find extreme points. Let’s first give a name to these points.

Definition 2.31. A basic solution to Ax = b is a vector x with exactly m nonzero
entries. The variables associated to the zero entries of x are called non-basic vari-
ables, and the others are called basic variables.

Example 2.32. A basic solution to the equation1 0 1 0 1 0
0 −1 −1 0 −1 −1
1 2 2 1 1 1

 x =

b1
b2
b3


is obtained by finding three linearly independent columns. For example, the first,
fourth, and fifth columns: 1 0 1

0 0 −1
1 1 1

 x′ =

b1
b2
b3


yield the basic solution x = (b1 + b2, 0, 0, b3 − b1,−b2, 0).

Note that basic solutions need not be feasible solutions, that is, they may con-
tain negative entries. A feasible solution that is also a basic solution is called a
basic feasible solution.

Exercise 2. Consider an LP in canonical form with

A =

 2 3 1 0 0
−1 1 0 2 1
0 6 1 0 3

 , b =

1
1
4

 .

Which of the following points are basic solutions?

u =


0
2
−5
0
−1

 , v =


0
0
1
0
1

 , w =


1
0
−1
1
0


Are any of them basic feasible solutions?
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Theorem 2.33 (Extremely basic feasible solutions). Every basic feasible solution of
an LP in canonical form is an extreme point of the set of feasible solutions. The converse
is also true.

Assuming the constraint matrix A ∈ Matm×s(R), with s ⩾ m, then we know
an upper bound on the number of basic feasible solutions. It is(

s
m

)
=

s!
m!(s − m)!

.

We have been dealing primarily with canonical form. What can we do about
standard form?

Suppose x′ ∈ Rs is an extreme point of the set of feasible solutions in canonical
form. Then by truncating x′ to x ∈ Rm we obtain an extreme point of the set of
feasible solutions in standard form. Thus, we go from SF to CF via adding slack
variables, and from CF to SF by truncating those slack variables.

Try these problems out yourself.

Exercise 3. Consider an LP in CF with

A =

3 0 1 1 0
2 1 0 0 0
4 0 3 0 1

 , b =

5
3
6

 .

Which of the points

x1 =


0
3
0
5
6

 , x2 =


0
3
5
0
−9

 , x3 =


1
1

1/2
3/2
1/2

 , x4 =


1/2

1
1
0
2

 , x5 =


3/2

0
0

1/2
0


is

(i) a basic solution,

(ii) a basic feasible solution,

(iii) an extreme point of the set of feasible solutions,

(iv) a feasible solution.

Exercise 4. Consider the following LP.

Maximize

z = 4x + 2y + 7z

subject to the constraints x, y, z ⩾ 0 and

2x − y + 4z ⩽ 18,
4x + 2x + 5z ⩽ 10.
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1. Put this into canonical form.

2. For each extreme point of the LP in canonical form, identify the basic vari-
ables.

3. Write down all of the extreme points for both the standard form and canon-
ical form.

4. Which of the extreme points are optimal solutions?

3 The simplex method

By Section 2.7, optimal solutions to LPs are extreme points of a convex polyhe-
dron. Although only finitely many, running through all of these points can be
expensive. The key result of the simplex method is that we do not need to con-
sider all extreme points. Instead, we start at an extreme point, and then move to
a “neighboring” extreme point if it further maximizes our objective function.

3.1 Build up

Definition 3.1. Two distinct extreme points of an LP in CF are adjacent if as basic
feasible solutions they have all but one basic variable in common.

Example 3.2. The pair of extreme points

(0, 0, 8, 15)⊤ (3, 0, 2, 0)⊤

are adjacent, but the following pairs of points are not:

(0, 0, 8, 15)⊤ (3/2, 5/2, 0, 0)⊤.

Week 4
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