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1 Introduction

Data analysis and more broadly Data Science is a vast and important field within
Computer Science and Mathematics. At the core, the goal is to make sense of
data, which can be measurements, survey results, behavior patterns, etc. Often
this data comes to us in a very “high dimension”. That is, there are so many
variables that it is impossible to visualize, and even in low dimensions, it may
not be clear what the best conclusion is based on the analysis.

A few references seem to agree that the total data on all computers is something
like 1023 bytes or about 100 zettabytes. While all of this data is not concentrated
in one organization, we still require highly sophisticated tools to make sense of
a huge amount of data. My goal with this course is that you will have a solid
foundation with some standard tools. From this bedrock one could explore more
sophisticated methods of data analysis more easily.

We will consider four key topics:
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1. Least Squares Fitting,

2. Principal Component Analysis,

3. k-Means and Hierarchical Clustering,

4. Nearest Neighbors and the Johnson–Lindenstrauss Theorem

We will be working with the assumption that the data we care about is pre-
served by orthogonal and linear transformations. This is not true with all data—
for example, one should not take (proper) linear combinations of people. How-
ever, for data like grams of different kinds of food, this is completely plausible.
This assumption will not always be necessary, but we will just keep this in mind.

Half of our time will be spent bringing these ideas to life and getting our
hands dirty. We will be working with Jupyter Notebooks to build familiarity
with the concepts we will discuss. This will be done using Python and standard
data analysis packages like Pandas.

2 Least squares fitting

This method of analysis is both simple and powerful. Like with most things
in mathematics, without some good guiding examples, we can get lost in the
formulas.

2.1 Build up

Suppose we have the following data as seen in Figure 2.1. (Maybe a company
produces parts once per month in lots that vary in size depending on demand.
We write i for the production run, xi for the lot size, and yi for the hours of labor.)

i xi yi
1 30 73
2 20 50
3 60 128
4 80 170
5 40 87
6 50 108
7 60 135
8 30 69
9 70 148
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Figure 2.1: Data points exhibiting a linear relationship.

It seems clear from the plot that the data fits a geometric pattern—there is a
linear phenomenon. If we try to find the line that is somehow closest to all the
data points, we might draw something like in Figure 2.2.
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Figure 2.2: Line of best fit with data points.

Although the line is not a perfect fit, it seems to tell us something about the
relationship between the lots size and the amount of hours.

Questions:

• What makes this line “better” than alternatives?

• How are we quantifying “better”?

• Why are we using a line?

We will answer the first question later, probably. Let us consider the question of
quantifying “better”. Least squares fitting is all about minimizing the squares of
differences between the line and the actual data points. We will make this precise
very soon.

2.2 Line of best fit

We know that the equation of a non-vertical line has the form

y = b0 + b1x.

If we had n data points of the form (xi, yi), we could choose b0 and b1 to minimize
the following sum

S(b0, b1) =
n

∑
i=1

(yi − (b0 + b1xi))
2 .

We can even solve for these values. Since S is a function in terms of b0 and b1,
all possible minima occur when the partial derivatives of S are 0. In other words,
the minima arise as values (b0, b1) such that

∂S
∂b0

= −2
n

∑
i=1

(yi − (b0 + b1xi)) = 0,

∂S
∂b1

= −2
n

∑
i=1

(xiyi − xi(b0 + b1xi)) = 0.
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These equations are linear equations, so we can solve for these with techniques
from linear algebra. This mean, we need to solve two equations in the unknown
b0 and b1:

nb0 + b1 ∑ xi = ∑ yi,

b0 ∑ xi + b1 ∑ x2
i = ∑ xiyi.

(2.1)

Using the data from our example in Section 2.1, we have

∑ xi = 500, ∑ yi = 1100, ∑ x2
i = 28400, ∑ xiyi = 61800.

Thus, the equations we need to solve are

10b0 + 500b1 = 1100,
500b0 + 28400b1 = 61800,

which yield b0 = 10 and b1 = 2. Going back to the context of the initial problem:
this solution tells us that by increasing the lot size by one, we expect to increase
the labor hours by two.

2.2.1 Written as matrices

Let us write the equations in (2.1) with matrices. This might seem like overkill at
this stage, but it will set us up nicely to generalize. Let

X =


1 x1
1 x2
...

...
1 xn

 , Y =


y1
y2
...

yn

 , B =

(
b0
b1

)
. (2.2)

Therefore, the equations in (2.1) are equivalent to the single matrix equation:

XtXB = XtY. (2.3)

If XtX is invertible, then B = (XtX)−1XtY.

2.3 In class exercises pt. I

1. (a) With X, Y, and B as defined in Equation (2.2), show that

XtX =

(
n ∑ xi

∑ xi ∑ x2
i

)
, XtY =

(
∑ yi

∑ xiyi

)
.

(b) Show that XtXB = XtY is equivalent to Equation (2.1):

nb0 + b1 ∑ xi = ∑ yi,

b0 ∑ xi + b1 ∑ x2
i = ∑ xiyi.
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2. Find a least squares fitting line to the following data and draw in the line:

i xi yi
1 1.0 1.0
2 2.0 1.5
3 3.0 2.0
4 1.5 2.0
5 3.5 3.0
6 3.0 4.5
7 4.0 2.0
8 5.0 3.5 1 2 3 4 5

1

2

3

4

xi

yi

(Round b0 and b1 to the nearest half integer.)

Week 1

2.4 Plane of best fit

We consider two independent variables and one dependent variable now. Con-
sider the following data points as given in Figure 2.3.

i xi1 xi2 yi
0 278 36 287
1 252 31 256
2 344 35 300
3 134 33 182
4 215 35 248
5 261 40 271
6 131 39 149
7 463 43 411
8 167 46 214
9 298 42 291

10 230 60 314
11 293 67 352
12 290 37 298
13 271 31 252
14 385 63 439
15 354 36 328
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Figure 2.3: Data points in R3.

We can put some meaning to these data. For example, suppose a company
is selling a product, and we have 16 populations of people labeled 0 through 15.
The values xi1 are the population sizes in 100s of people; the values xi2 are the
average yearly income in €1000 per capita; and the values yi are the number of
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sales of the product. (There might be dependencies between population size and
average income, but our model treats them as independent.)

It looks like though there is a plane of best fit for the data—thanks to the
suggestive viewing angle. Our goal is to find a plane, given by

y = b0 + b1x1 + b2x2.

We can just do what we did last time. That is, for

X =


1 x11 x12
1 x21 x22
...

...
...

1 xn1 xn2

 , Y =


y1
y2
...

yn

 , B =

b0
b1
b2

 ,

we need to solve for B in the equation

XtXB = XtY.

Thus, if XtX is invertible, there is a unique B, which is equal to (XtX)−1XtY. For
our example, we have

XtX =

 16 4366 674
4366 1309480 187024
674 187024 30330

 , XtY =

 4592
1343400
200571

 .

Therefore, the plane of best fit is approximately

y = −11.3 + 0.7x1 + 2.6x2.

Putting all the data together we have a plane of best fit as seen in Figure 2.4.

200 300 400 20
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300

400

xi1

xi2

y i

Figure 2.4: Data points together with the plane of best fit.
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2.5 Hyperplane of best fit

Now we go to the general case. Suppose we have p − 1 independent variables
and 1 dependent variable, where p ⩾ 2. We assume we have n data points of the
form (

xi1, xi2, . . . , xi,p−1, y1
)
∈ Rp.

The least squares fitting for these data is a hyperplane of the form

y = b0 + b1x1 + b2x2 + · · ·+ bp−1xp−1.

To solve for the values bi, we do as we did before. We define matrices

X =


1 x11 x12 · · · x1,p−1
1 x21 x22 · · · x2,p−1
...

...
... . . . ...

1 xn1 xn2 · · · xn,p−1

 , Y =


y1
y2
...

yn

 , B =


b0
b1
...

bp−1

 .

As before, the values we want are given by the equation

XtXB = XtY. (2.4)

2.6 Why Equation (2.4) works

The heart of least squares is (Euclidean) distance. The distance between two
points x = (x1, . . . , xp) and y = (y1, . . . , yp) in Rp is

d(x, y) = ∥x − y∥ =
√
(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xp − yp)2.

For a vector v = (v1, . . . , vp) ∈ Rp, the length of v is

∥v∥ = d(0, v) =
√

v2
1 + v2

2 + · · ·+ v2
p.

Recall that the dot product of two (column) vectors u and v is

u · v = utv = u1v1 + u2v2 + · · ·+ upvp.

Thus, the length of v is ∥v∥ =
√

v · v; in other words ∥v∥2 = v · v. In addition, if
u · v = 0, we say that u and v are orthogonal (or perpendicular).

The goal of least squares is to minimize distance; more specifically to minimize
∥Y − XB∥. Note that the column vector Y has entries that are the actual yi values,
and the column vector

XB =


B · (1, x11, x12, . . . , x1,p−1)
B · (1, x21, x22, . . . , x2,p−1)

...
B · (1, xn1, xn2, . . . , xn,p−1)

 =


b0 + b1x11 + b2x12 + · · ·+ bp−1x1,p−1
b0 + b1x21 + b2x22 + · · ·+ bp−1x2,p−1

...
b0 + b1xn1 + b2xn2 + · · ·+ bp−1xn,p−1


Therefore, ∥Y − XB∥ is the square root of a sum of squares of the form

yi − b0 + b1xi1 + b2xi2 + · · ·+ bp−1xi,p−1.

Hence minimizing ∥Y − XB∥ is the same as minimizing ∥Y − XB∥2, which is a
sum of squares.
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Proposition 2.1. The minimal distance ∥Y − XB∥ is achieved by solving for B in

XtXB = XtY.

Week 2

Proof. Consider the subspace U = {Xu | u ∈ Rp} of Rn, and observe that our
desired solution XB is contained in U. Since ∥Y − XB∥ is minimal, we must
have that the vector Y − XB is orthogonal to all vectors contained in U.1 That is,
(Xu) · (Y − XB) = 0 for all u ∈ Rp. In other words, we have for all u ∈ Rp,

0 = (Xu)t(Y − XB) = utXt(Y − XB)

= ut (XtY − XtXB
)

.

Because ut (XtY − XtXB) = 0 for all u ∈ Rp, it follows that XtY − XtXB = 0.

2.7 In class exercises pt. II

1. Determine XtX and XtY with

X =


1 x11 x12 · · · x1,p−1
1 x21 x22 · · · x2,p−1
...

...
... . . . ...

1 xn1 xn2 · · · xn,p−1

 , Y =


y1
y2
...

yn

 .

2. Using (1) and by taking partial derivatives of

S(b0, . . . , bp−1) =
n

∑
i=1

(yi − (b0 + b1xi1 + b2xi2 + · · ·+ bp−1xi,p−1))
2, (2.5)

show that the hyperplane of best fit is obtained by solving XtXB = XtY.
(You could try this for p = 3 first.)

2.8 Nonlinear fittings

Although all of our examples so far have been linear fittings, we will demonstrate
that least squares fittings works in the nonlinear case. What is important is that
we have a candidate equation to fit. In the linear cases, we tried to fit

y = b0 + b1x1 + b2x2 + · · ·+ bp−1xp−1.

Suppose we have the following data as given in Figure 2.5. Instead of trying
to fit the line y = b0 + b1x, we could try to fit the parabola:

y = b0 + b1x + b2x2.

1To see why this is true, see Section 6.3.1 of [3], which is all about orthogonal decompositions.
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We can treat this the same way as before. Of course the quantities x and x2 are
not independent, but we can ignore this. Set

xi1 = xi, xi2 = x2
i .

Therefore, the hyperplane of best fit for the data (xi1, xi2, yi) will give us the
parabola of best fit. Try this on your own!

xi yi
2.27 2.50
5.06 -16.13
1.45 4.23
5.89 -22.46
0.48 1.37
-0.22 0.86
1.44 11.85
-1.77 -14.71
2.45 9.42
-1.54 -14.07
7.55 -55.62
1.76 4.45
5.16 -19.56
3.26 -2.79
3.23 5.20
0.85 8.09

−2 0 2 4 6 8
−60

−40

−20

0

xi

y i

Figure 2.5: Data points demonstrating a nonlinear relationship.

So one can fit any hypersurface y = f (x1, . . . , xp−1) to the given data. The
function f in this case is called the regression function. This general method of
analysis is known as regression analysis. A few questions arise:

• Which surface is “best”?

• How can we quantify “best”?

• Even in the line case (p = 2), how can we quantify how well data fits our
line?

Week 3

2.9 Coefficient of determination (R2 values)

We are going to make precise how well our hyperplane fits our data. Recall that
hyperplanes can be replaced by hypersurfaces; see Section 2.8. First we establish
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some notation. Suppose we have n data points (xi1, xi2, . . . , xi,p−1, yi) ∈ Rp. Then
we define

(Fitted value) ŷi = b0 + b1xi1 + b2xi2 + · · ·+ bp−1xi,p−1,

(Residual) ei = yi − ŷi,

(Sample mean) y =
1
n

n

∑
i=1

yi.

These yield vectors in Rn as follows

Ŷ =

ŷ1
...

ŷn

 = XB, E =

e1
...

en

 = Y − Ŷ, Y =

y
...
y

 = y

1
...
1

 .

From our n data points, we have three points in Rn given by Y, Ŷ, and Y.
Three points always lie on a plane, so the three point determine a triangle on
such a plane. What does this triangle look like? If it is a triangle (and not a line
or a single point), then the next lemma proves it must be a right triangle.

Lemma 2.2. The vectors E = Y − Ŷ and Ŷ − Y are orthogonal.

Proof. Suppose XtXB = XtY. We need to prove two equations. For the first,

0 = Xt(Y − XB) = Xt(Y − Ŷ) = XtE.

Hence, XtE = 0. For the second,

YtE = y
n

∑
i=1

(yi − ŷi)

= y
n

∑
i=1

(yi − (b0 + b1xi1 + b2xi2 + · · ·+ bp−1xi,p−1))

= −y
2
· ∂S

∂b0
= 0,

where S is defined in Equation (2.5), so YtE = 0. Thus, we have

(Ŷ − Y) · E = (XB)tE − YtE = 0.

Remark 2.3. One can simplify the proof for Lemma 2.2 by applying an isometry
to the data, so that y = 0. That is, one only needs to prove that E and Ŷ are
orthogonal.

The lengths of the differences of the vectors are important and have names:

(Sums of Squares Total – SST) : ∥Y − Y∥2,

(Sums of Squares Error – SSE) : ∥Y − Ŷ∥2,
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(Sums of Squares Regression – SSR) : ∥Ŷ − Y∥2.

The value SST measures the total variability of the data set. For example,
√

SST =
∥Y − Y∥ is the distance from the actual data Y to the sample mean Y. Using the
same ideas, we can see that SSE measures the error of our regression and that
SSR measures the distance from our regression to the sample mean.

Proposition 2.4.
SST = SSE + SSR.

Proof. Apply Lemma 2.2 and the Pythagorean Theorem:

∥Y − Y∥2 = ∥Y − Ŷ∥2 + ∥Ŷ − Y∥2.

Now we can describe a quantity that measures how good our regression fits
the given data.

Definition 2.5. The coefficient of determination (also known as the R2-value) is

R2 =
SSR
SST

=
∥Ŷ − Y∥2

∥Y − Y∥2
.

Proposition 2.6. 0 ⩽ R2 ⩽ 1.

Proof. Since each SST and SSR are squares, they are nonnegative. By Proposi-
tion 2.4, we have 0 ⩽ SSR ⩽ SST.

2.9.1 What do the extremes means?

The one case where R2 is meaningless is when SST = 0. This implies both SSR =
SSE = 0. Moreover, Y = Y = y1, where 1 is the all ones column vector. Hence,
every data point yi is the same and, therefore, equal to the mean. Let’s never
return to this case.

We can have SSR = 0, which is equivalent to R2 = 0. This implies that
∥Ŷ − Y∥2 = 0, so that Ŷ = Y. In other words, our prediction ŷi is just simply the
mean. This means we have not found any relationship between the independent
variables and the dependent variables.

In the other extreme we have SSR = SST, which is equivalent to R2 = 1.
This implies that Y = Ŷ, so the given data lies (exactly) on the surface given by
y = f (x1, . . . , xp−1). That is, the regression function exactly predicts the data.

To summarize, when R2 = 0, we cannot deduce any relationship between
the independent and dependent variables, and when R2 = 1, we understand
completely the relationship between the independent and dependent variables.
Very roughly speaking, the R2 can be thought of as the ratio of how well the
regression fits the data.
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2.10 In class exercises pt. III

1. Prove the following.

(a) ∥Y∥2 = ny.

(b) Y · Y = Ŷ · Y = ∥Y∥2.

(c) Y · Ŷ = ∥Ŷ∥2.

2. Use (1) to show that

(a) SST = ∥Y∥2 − ∥Y∥2,

(b) SSE = ∥Y∥2 − ∥Ŷ∥2,

(c) SSR = ∥Ŷ∥2 − ∥Y∥2.

3. What are the R2 values for the examples above?

3 Principal component analysis

Principal component analysis (PCA) is a power method of analysis that comes
standard in all data science tool kits. With little effort, one can reduce a complex
data set to data that we can more easily see structure. More specifically, the goal
of PCA is to find the “best” basis to express the data. In other words, our initial
reference frame may not be the one that best expresses the structure of our data—
PCA is a method to find the “best” reference frame.

3.1 Introducing PCA

We will start with a toy example, where the analysis is quite simple. Suppose we
have many many data points in R2 as seen in Figure 3.1.

Let’s assume that our data points live in Rm, so that m = 2 in Figure 3.1.
Suppose we write those data points in an m × n matrix X. Our current (and
default) basis is {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}, and we want a basis
{p1, p2, . . . , pm} that better reflects the structure of our data. That is, we want an
m × m matrix P, whose rows are the pi, that provides us a better reference frame.
Therefore, we want to transform our data X into a new data set Y such that

PX = Y.

The columns of X are the “old” data, and the columns of Y are the “new” data. If
the pi are row vectors and the xi column vectors, then we want

PX =


p1
p2
...

pm

(
x1 x2 · · · xn

)
=


p1 · x1 p1 · x2 · · · p1 · xn
p2 · x1 p2 · x2 · · · p2 · xn

...
... . . . ...

pm · x1 pm · x2 · · · pm · xn

 .
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Figure 3.1: Some data in R2.

Thus, if the columns of Y are written yi, we have

yi =


p1 · xi
p2 · xi

...
pm · xi

 . (3.1)

Back to our example from Figure 3.1. We want data with a high signal-to-
noise (SNR) ratio as to minimize noise. Assuming our data in Figure 3.1 was
collected reasonably well, the direction of largest variance is the direction of most
interesting dynamics. Therefore, the variance of signal, σ2

s , would correspond
to the length of the orange vector in fig. 3.2 pointing to the top right, and the
variance of the noise, σ2

n, would correspond to the length of the orange vector
pointing to the top left.

Note also that in Figure 3.2 knowing the x value gives one a good approxima-
tion for the y value and vice versa. In this case, we might say that the data has a
moderate amount of redundancy, whereas if the data points had a much higher
R2 value to its line of best fit, we would say the data have high redundancy. (And
if the data had a much lower R2 value, we would say the data have low redun-
dancy.) One of the aims of PCA is to lower redundancy. For the 2-dimensional
case, this is simple—take the line of best fit, but for arbitrarily higher dimensions,
this is not obvious.

Week 4
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Figure 3.2: Signal and noise variances represented graphically.
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