INSTRUCTIONS

Please submit on Canvas as a Jupyter Notebook file (an ipynb file) by 23:59 on 17.11.2023.
Three problem sets count for 40% of the module assessment, and the exam counts for the other 60%. The lowest of the three sets will be ignored.

Develop your own Python code rather than simply using existing Python modules for computing the relevant mathematics we discuss in class (e.g. statsmodels). If in doubt, send me an email. The Jupyter notebook should contain your responses and/or proofs as markdown cells.

The homework will be graded according to a scheme in which content (i.e. correctness of your answers, choice of methods, python code) is weighted at 80% and presentation (i.e. manner in which you present your answers, methods, and code) is weighted at 20%.

Problems

Problem 1. Write your own Python function, called BasicKMeans, to compute a k-means clustering. The input and output of BasicKMeans should satisfy the following:

Input: a positive integer k, and a list (or other list-like iterable) of n data points in \mathbb{R}^{m}.
Output: a list L of length n such that $\mathrm{L}[\mathrm{i}]=j$ implies the i th point is contained in the j th cluster.
Problem 2. The following table gives distances between vertices of a graph.

	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}
v_{1}	0	9	6	1	6	7	8	2
v_{2}	9	0	3	8	8	4	6	10
v_{3}	6	3	0	6	6	2	4	8
v_{4}	1	8	6	0	5	7	7	2
v_{5}	6	8	6	5	0	7	3	6
v_{6}	7	4	2	7	7	0	5	9
v_{7}	8	6	4	7	3	5	0	8
v_{8}	2	10	8	2	6	9	8	0

Suppose $t \geqslant 0$, and let G_{t} be the graph with vertices $\left\{v_{1}, \ldots, v_{8}\right\}$ and edges $\left\{\left\{v_{i}, v_{j}\right\} \mid \mathrm{d}\left(v_{i}, v_{j}\right) \leqslant t\right\}$.
(1) Give the adjacency matrices for the three graphs: G_{2}, G_{5}, and G_{8}.
(2) Give two dendrograms that encodes the inclusion between the connected components of the graphs $G_{0}, G_{1}, \ldots, G_{10}$. One dendrogram should use single-linkage and the other dendrogram should use complete-linkage.
Note: Instead of drawing a dendrogram, we will represent the same information in Python as a list D of pairs (t, C), where t is a real number and C is a list of sets, each set in C corresponds to a cluster. For example the dendrogram

can be represented as

```
D = [
    (0, [{'a'}, {'b'`}, {'c'}}])
    (3.5, [{'a', 'b'}, {'c''}]),
    (6, [{'a', 'b', 'c'}])
]
```

