
Geometric Foundations of Data Analysis I

Joshua Maglione

November 3, 2023

Contents

1 Introduction 2

2 Least squares fitting 2
2.1 Build up . 2
2.2 Line of best fit . 4
2.3 In class exercises pt. I . 5
2.4 Plane of best fit . 5
2.5 Hyperplane of best fit . 6
2.6 Why Equation (2.4) works . 7
2.7 In class exercises pt. II . 8
2.8 Nonlinear fittings . 9
2.9 Coefficient of determination (r2 values) 10
2.10 In class exercises pt. III . 12

3 Principal component analysis 12
3.1 Introducing PCA . 12
3.2 In class exercises pt. IV . 16
3.3 Performing PCA . 16
3.4 Projections . 18
3.5 PCA is always possible—the Spectral Theorem 19

4 Clustering 21
4.1 Introduction to k-means clustering 23
4.2 Image compression with k-means . 23
4.3 The k-means algorithm . 23
4.4 A small example with k-means . 25
4.5 Introduction to hierarchical clustering 28
4.6 An application of hierarchical clustering 28
4.7 The neighbour joining algorithm . 28
4.8 A small example of hierarchical clustering 31

1

1 Introduction

Data analysis and more broadly Data Science is a vast and important field within
Computer Science and Mathematics. At the core, the goal is to make sense of
data, which can be measurements, survey results, behavior patterns, etc. Often
this data comes to us in a very “high dimension”. That is, there are so many
variables that it is impossible to visualize, and even in low dimensions, it may
not be clear what the best conclusion is based on the analysis.

A few references seem to agree that the total data on all computers is something
like 1023 bytes or about 100 zettabytes. While all of this data is not concentrated
in one organization, we still require highly sophisticated tools to make sense of
a huge amount of data. My goal with this course is that you will have a solid
foundation with some standard tools. From this bedrock one could explore more
sophisticated methods of data analysis more easily.

We will consider four key topics:

1. Least Squares Fitting,

2. Principal Component Analysis,

3. k-Means and Hierarchical Clustering,

4. Nearest Neighbors and the Johnson–Lindenstrauss Theorem

We will be working with the assumption that the data we care about is pre-
served by orthogonal and linear transformations. This is not true with all data—
for example, one should not take (proper) linear combinations of people. How-
ever, for data like grams of different kinds of food, this is completely plausible.
This assumption will not always be necessary, but we will just keep this in mind.

Half of our time will be spent bringing these ideas to life and getting our
hands dirty. We will be working with Jupyter Notebooks to build familiarity
with the concepts we will discuss. This will be done using Python and standard
data analysis packages like Pandas.

2 Least squares fitting

This method of analysis is both simple and powerful. Like with most things
in mathematics, without some good guiding examples, we can get lost in the
formulas.

2.1 Build up

Suppose we have the following data as seen in Figure 2.1. (Maybe a company
produces parts once per month in lots that vary in size depending on demand.
We write i for the production run, xi for the lot size, and yi for the hours of labor.)

2

i xi yi
1 30 73
2 20 50
3 60 128
4 80 170
5 40 87
6 50 108
7 60 135
8 30 69
9 70 148

10 60 132 20 30 40 50 60 70 80 90

60
80

100
120
140
160
180

x

y

Figure 2.1: Data points exhibiting a linear relationship.

20 30 40 50 60 70 80 90

60
80

100
120
140
160
180

x

y

Figure 2.2: Line of best fit with data points.

It seems clear from the plot that the data fits a geometric pattern—there is a
linear phenomenon. If we try to find the line that is somehow closest to all the
data points, we might draw something like in Figure 2.2.

Although the line is not a perfect fit, it seems to tell us something about the
relationship between the lots size and the amount of hours.

Questions:

• What makes this line “better” than alternatives?

• How are we quantifying “better”?

• Why are we using a line?

We will answer the first question later, probably. Let us consider the question of
quantifying “better”. Least squares fitting is all about minimizing the squares of
differences between the line and the actual data points. We will make this precise
very soon.

3

2.2 Line of best fit

We know that the equation of a non-vertical line has the form

y = b0 + b1x.

If we had n data points of the form (xi, yi), we could choose b0 and b1 to minimize
the following sum

S(b0, b1) =
n

∑
i=1

(yi − (b0 + b1xi))
2 .

We can even solve for these values. Since S is a function in terms of b0 and b1,
all possible minima occur when the partial derivatives of S are 0. In other words,
the minima arise as values (b0, b1) such that

∂S
∂b0

= −2
n

∑
i=1

(yi − (b0 + b1xi)) = 0,

∂S
∂b1

= −2
n

∑
i=1

(xiyi − xi(b0 + b1xi)) = 0.

These equations are linear equations, so we can solve for these with techniques
from linear algebra. This mean, we need to solve two equations in the unknown
b0 and b1:

nb0 + b1 ∑ xi = ∑ yi,

b0 ∑ xi + b1 ∑ x2
i = ∑ xiyi.

(2.1)

Using the data from our example in Section 2.1, we have

∑ xi = 500, ∑ yi = 1100, ∑ x2
i = 28400, ∑ xiyi = 61800.

Thus, the equations we need to solve are

10b0 + 500b1 = 1100,
500b0 + 28400b1 = 61800,

which yield b0 = 10 and b1 = 2. Going back to the context of the initial problem:
this solution tells us that by increasing the lot size by one, we expect to increase
the labor hours by two.

2.2.1 Written as matrices

Let us write the equations in (2.1) with matrices. This might seem like overkill at
this stage, but it will set us up nicely to generalize. Let

X =

1 x1
1 x2
...

...
1 xn

 , Y =

y1
y2
...

yn

 , B =

(
b0
b1

)
. (2.2)

4

Therefore, the equations in (2.1) are equivalent to the single matrix equation:

XtXB = XtY. (2.3)

If XtX is invertible, then B = (XtX)−1XtY.

2.3 In class exercises pt. I

1. (a) With X, Y, and B as defined in Equation (2.2), show that

XtX =

(
n ∑ xi

∑ xi ∑ x2
i

)
, XtY =

(
∑ yi

∑ xiyi

)
.

(b) Show that XtXB = XtY is equivalent to Equation (2.1):

nb0 + b1 ∑ xi = ∑ yi,

b0 ∑ xi + b1 ∑ x2
i = ∑ xiyi.

2. Find a least squares fitting line to the following data and draw in the line:

i xi yi
1 1.0 1.0
2 2.0 1.5
3 3.0 2.0
4 1.5 2.0
5 3.5 3.0
6 3.0 4.5
7 4.0 2.0
8 5.0 3.5 1 2 3 4 5

1

2

3

4

xi

yi

(Round b0 and b1 to the nearest half integer.)

2.4 Plane of best fit

We consider two independent variables and one dependent variable now. Con-
sider the following data points as given in Figure 2.3.

We can put some meaning to these data. For example, suppose a company
is selling a product, and we have 16 populations of people labeled 0 through 15.
The values xi1 are the population sizes in 100s of people; the values xi2 are the
average yearly income in €1000 per capita; and the values yi are the number of
sales of the product. (There might be dependencies between population size and
average income, but our model treats them as independent.)

It looks like though there is a plane of best fit for the data—thanks to the
suggestive viewing angle. Our goal is to find a plane, given by

y = b0 + b1x1 + b2x2.

5

i xi1 xi2 yi
0 278 36 287
1 252 31 256
2 344 35 300
3 134 33 182
4 215 35 248
5 261 40 271
6 131 39 149
7 463 43 411
8 167 46 214
9 298 42 291

10 230 60 314
11 293 67 352
12 290 37 298
13 271 31 252
14 385 63 439
15 354 36 328

200 300 400 40

60
200

300

400

xi1

xi2

y i

Figure 2.3: Data points in R3.

We can just do what we did last time. That is, for

X =

1 x11 x12
1 x21 x22
...

...
...

1 xn1 xn2

 , Y =

y1
y2
...

yn

 , B =

b0
b1
b2

 ,

we need to solve for B in the equation

XtXB = XtY.

Thus, if XtX is invertible, there is a unique B, which is equal to (XtX)−1XtY. For
our example, we have

XtX =

 16 4366 674
4366 1309480 187024
674 187024 30330

 , XtY =

 4592
1343400
200571

 .

Therefore, the plane of best fit is approximately

y = −11.3 + 0.7x1 + 2.6x2.

Putting all the data together we have a plane of best fit as seen in Figure 2.4.

2.5 Hyperplane of best fit

Now we go to the general case. Suppose we have p − 1 independent variables
and 1 dependent variable, where p ⩾ 2. We assume we have n data points of the
form (

xi1, xi2, . . . , xi,p−1, y1
)
∈ Rp.

6

200 300 400 20
40

60200

300

400

xi1

xi2

y i

Figure 2.4: Data points together with the plane of best fit.

The least squares fitting for these data is a hyperplane of the form

y = b0 + b1x1 + b2x2 + · · ·+ bp−1xp−1.

To solve for the values bi, we do as we did before. We define matrices

X =

1 x11 x12 · · · x1,p−1
1 x21 x22 · · · x2,p−1
...

...
...

1 xn1 xn2 · · · xn,p−1

 , Y =

y1
y2
...

yn

 , B =

b0
b1
...

bp−1

 .

As before, the values we want are given by the equation

XtXB = XtY. (2.4)

2.6 Why Equation (2.4) works

The heart of least squares is (Euclidean) distance. The distance between two
points x = (x1, . . . , xp) and y = (y1, . . . , yp) in Rp is

d(x, y) = ∥x − y∥ =
√
(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xp − yp)2.

For a vector v = (v1, . . . , vp) ∈ Rp, the length of v is

∥v∥ = d(0, v) =
√

v2
1 + v2

2 + · · ·+ v2
p.

Recall that the dot product of two (column) vectors u and v is

u · v = utv = u1v1 + u2v2 + · · ·+ upvp.

Thus, the length of v is ∥v∥ =
√

v · v; in other words ∥v∥2 = v · v. In addition, if
u · v = 0, we say that u and v are orthogonal (or perpendicular).

7

The goal of least squares is to minimize distance; more specifically to minimize
∥Y − XB∥. Note that the column vector Y has entries that are the actual yi values,
and the column vector

XB =

B · (1, x11, x12, . . . , x1,p−1)
B · (1, x21, x22, . . . , x2,p−1)

...
B · (1, xn1, xn2, . . . , xn,p−1)

 =

b0 + b1x11 + b2x12 + · · ·+ bp−1x1,p−1
b0 + b1x21 + b2x22 + · · ·+ bp−1x2,p−1

...
b0 + b1xn1 + b2xn2 + · · ·+ bp−1xn,p−1

Therefore, ∥Y − XB∥ is the square root of a sum of squares of the form

yi − b0 + b1xi1 + b2xi2 + · · ·+ bp−1xi,p−1.

Hence minimizing ∥Y − XB∥ is the same as minimizing ∥Y − XB∥2, which is a
sum of squares.

Proposition 2.1. The minimal distance ∥Y − XB∥ is achieved by solving for B in

XtXB = XtY.

Proof. Consider the subspace U = {Xu | u ∈ Rp} of Rn, and observe that our
desired solution XB is contained in U. Since ∥Y − XB∥ is minimal, we must
have that the vector Y − XB is orthogonal to all vectors contained in U.1 That is,
(Xu) · (Y − XB) = 0 for all u ∈ Rp. In other words, we have for all u ∈ Rp,

0 = (Xu)t(Y − XB) = utXt(Y − XB)

= ut (XtY − XtXB
)

.

Because ut (XtY − XtXB) = 0 for all u ∈ Rp, it follows that XtY − XtXB = 0.

2.7 In class exercises pt. II

1. Determine XtX and XtY with

X =

1 x11 x12 · · · x1,p−1
1 x21 x22 · · · x2,p−1
...

...
...

1 xn1 xn2 · · · xn,p−1

 , Y =

y1
y2
...

yn

 .

2. Using (1) and by taking partial derivatives of

S(b0, . . . , bp−1) =
n

∑
i=1

(yi − (b0 + b1xi1 + b2xi2 + · · ·+ bp−1xi,p−1))
2, (2.5)

show that the hyperplane of best fit is obtained by solving XtXB = XtY.
(You could try this for p = 3 first.)

1To see why this is true, see Section 6.3.1 of [3], which is all about orthogonal decompositions.

8

2.8 Nonlinear fittings

Although all of our examples so far have been linear fittings, we will demonstrate
that least squares fittings works in the nonlinear case. What is important is that
we have a candidate equation to fit. In the linear cases, we tried to fit

y = b0 + b1x1 + b2x2 + · · ·+ bp−1xp−1.

Suppose we have the following data as given in Figure 2.5. Instead of trying
to fit the line y = b0 + b1x, we could try to fit the parabola:

y = b0 + b1x + b2x2.

We can treat this the same way as before. Of course the quantities x and x2 are
not independent, but we can ignore this. Set

xi1 = xi, xi2 = x2
i .

Therefore, the hyperplane of best fit for the data (xi1, xi2, yi) will give us the
parabola of best fit. Try this on your own!

xi yi
2.27 2.50
5.06 -16.13
1.45 4.23
5.89 -22.46
0.48 1.37
-0.22 0.86
1.44 11.85
-1.77 -14.71
2.45 9.42
-1.54 -14.07
7.55 -55.62
1.76 4.45
5.16 -19.56
3.26 -2.79
3.23 5.20
0.85 8.09

−2 0 2 4 6 8
−60

−40

−20

0

xi

y i

Figure 2.5: Data points demonstrating a nonlinear relationship.

So one can fit any hypersurface y = f (x1, . . . , xp−1) to the given data. The
function f in this case is called the regression function. This general method of
analysis is known as regression analysis. A few questions arise:

• Which surface is “best”?

• How can we quantify “best”?

• Even in the line case (p = 2), how can we quantify how well data fits our
line?

9

2.9 Coefficient of determination (r2 values)

We are going to make precise how well our hyperplane fits our data. Recall that
hyperplanes can be replaced by hypersurfaces; see Section 2.8. First we establish
some notation. Suppose we have n data points (xi1, xi2, . . . , xi,p−1, yi) ∈ Rp. Then
we define

(Fitted value) ŷi = b0 + b1xi1 + b2xi2 + · · ·+ bp−1xi,p−1,

(Residual) ei = yi − ŷi,

(Sample mean) y =
1
n

n

∑
i=1

yi.

These yield vectors in Rn as follows

Ŷ =

ŷ1
...

ŷn

 = XB, E =

e1
...

en

 = Y − Ŷ, Y =

y
...
y

 = y

1
...
1

 .

From our n data points, we have three points in Rn given by Y, Ŷ, and Y.
Three points always lie on a plane, so the three point determine a triangle on
such a plane. What does this triangle look like? If it is a triangle (and not a line
or a single point), then the next lemma proves it must be a right triangle.

Lemma 2.2. The vectors E = Y − Ŷ and Ŷ − Y are orthogonal.

Proof. Suppose XtXB = XtY. We need to prove two equations. For the first,

0 = Xt(Y − XB) = Xt(Y − Ŷ) = XtE.

Hence, XtE = 0. For the second,

YtE = y
n

∑
i=1

(yi − ŷi)

= y
n

∑
i=1

(yi − (b0 + b1xi1 + b2xi2 + · · ·+ bp−1xi,p−1))

= −y
2
· ∂S

∂b0
= 0,

where S is defined in Equation (2.5), so YtE = 0. Thus, we have

(Ŷ − Y) · E = (XB)tE − YtE = 0.

Remark 2.3. One can simplify the proof for Lemma 2.2 by applying an isometry
to the data, so that y = 0. That is, one only needs to prove that E and Ŷ are
orthogonal.

10

The lengths of the differences of the vectors are important and have names:

(Sums of Squares Total – SST) : ∥Y − Y∥2,

(Sums of Squares Error – SSE) : ∥Y − Ŷ∥2,

(Sums of Squares Regression – SSR) : ∥Ŷ − Y∥2.

The value SST measures the total variability of the data set. For example,
√

SST =
∥Y − Y∥ is the distance from the actual data Y to the sample mean Y. Using the
same ideas, we can see that SSE measures the error of our regression and that
SSR measures the distance from our regression to the sample mean.

Proposition 2.4.
SST = SSE + SSR.

Proof. Apply Lemma 2.2 and the Pythagorean Theorem:

∥Y − Y∥2 = ∥Y − Ŷ∥2 + ∥Ŷ − Y∥2.

Now we can describe a quantity that measures how good our regression fits
the given data.

Definition 2.5. The coefficient of determination (also known as the r2-value) is

r2 =
SSR
SST

=
∥Ŷ − Y∥2

∥Y − Y∥2
.

Proposition 2.6. 0 ⩽ r2 ⩽ 1.

Proof. Since each SST and SSR are squares, they are nonnegative. By Proposi-
tion 2.4, we have 0 ⩽ SSR ⩽ SST.

2.9.1 What do the extremes means?

The one case where r2 is meaningless is when SST = 0. This implies both SSR =
SSE = 0. Moreover, Y = Y = y1, where 1 is the all ones column vector. Hence,
every data point yi is the same and, therefore, equal to the mean. Let’s never
return to this case.

We can have SSR = 0, which is equivalent to r2 = 0. This implies that ∥Ŷ −
Y∥2 = 0, so that Ŷ = Y. In other words, our prediction ŷi is just simply the
mean. This means we have not found any relationship between the independent
variables and the dependent variables.

In the other extreme we have SSR = SST, which is equivalent to r2 = 1.
This implies that Y = Ŷ, so the given data lies (exactly) on the surface given by
y = f (x1, . . . , xp−1). That is, the regression function exactly predicts the data.

To summarize, when r2 = 0, we cannot deduce any relationship between the
independent and dependent variables, and when r2 = 1, we understand com-
pletely the relationship between the independent and dependent variables. Very
roughly speaking, the r2 can be thought of as the ratio of how well the regression
fits the data.

11

2.10 In class exercises pt. III

1. Prove the following.

(a) ∥Y∥2 = ny.

(b) Y · Y = Ŷ · Y = ∥Y∥2.

(c) Y · Ŷ = ∥Ŷ∥2.

2. Use (1) to show that

(a) SST = ∥Y∥2 − ∥Y∥2,

(b) SSE = ∥Y∥2 − ∥Ŷ∥2,

(c) SSR = ∥Ŷ∥2 − ∥Y∥2.

3. What are the r2 values for the examples above?

3 Principal component analysis

Principal component analysis (PCA) is a power method of analysis that comes
standard in all data science tool kits. With little effort, one can reduce a complex
data set to data that we can more easily see structure. More specifically, the goal
of PCA is to find the “best” basis to express the data. In other words, our initial
reference frame may not be the one that best expresses the structure of our data—
PCA is a method to find the “best” reference frame.

3.1 Introducing PCA

We will start with a toy example, where the analysis is quite simple. Suppose we
have many many data points in R2 as seen in Figure 3.1.

Let’s assume that our data points live in Rm, so that m = 2 in Figure 3.1.
Suppose we write those data points in an m × n matrix X. Our current (and
default) basis is {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}, and we want a basis
{p1, p2, . . . , pm} that better reflects the structure of our data. That is, we want an
m × m matrix P, whose rows are the pi, that provides us a better reference frame.
Therefore, we want to transform our data X into a new data set Y such that

PX = Y.

The columns of X are the “old” data, and the columns of Y are the “new” data. If
the pi are row vectors and the xi column vectors, then we want

PX =

p1
p2
...

pm

(
x1 x2 · · · xn

)
=

p1 · x1 p1 · x2 · · · p1 · xn
p2 · x1 p2 · x2 · · · p2 · xn

...
...

pm · x1 pm · x2 · · · pm · xn

 .

12

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

x

y

Figure 3.1: Some data in R2.

Thus, if the columns of Y are written yi, we have

yi =

p1 · xi
p2 · xi

...
pm · xi

 . (3.1)

Back to our example from Figure 3.1. We want data with a high signal-to-
noise (SNR) ratio as to minimize noise. Assuming our data in Figure 3.1 was
collected reasonably well, the direction of largest variance is the direction of most
interesting dynamics. Therefore, the variance of signal, σ2

s , would correspond
to the length of the orange vector in fig. 3.2 pointing to the top right, and the
variance of the noise, σ2

n, would correspond to the length of the orange vector
pointing to the top left.

Note also that in Figure 3.2 knowing the x value gives one a good approxima-
tion for the y value and vice versa. In this case, we might say that the data has a
moderate amount of redundancy, whereas if the data points had a much higher
r2 value to its line of best fit, we would say the data have high redundancy. (And
if the data had a much lower r2 value, we would say the data have low redun-
dancy.) One of the aims of PCA is to lower redundancy. For the 2-dimensional
case, this is simple—take the line of best fit, but for arbitrarily higher dimensions,
this is not obvious.

Suppose we have n measurements

U = {u1, u2, . . . , un} and V = {v1, v2, . . . , vn}
with mean equal to 0. The variances are equal to

σ2
U =

1
n

n

∑
i=1

u2
i , σ2

V =
1
n

n

∑
i=1

v2
i .

13

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6
σ2

s

σ2
n

x

y

Figure 3.2: Signal and noise variances represented graphically.

The covariance between the data sets U and V is

σ2
UV =

1
n

n

∑
i=1

uivi.

The covariance measures the degree of the linear relationship between the two
variables. Thus, a large positive value would imply that the data are positively
correlated, and a large negative value would imply negatively correlated. And
σ2

UV = 0 if and only if the data U and V are uncorrelated. Moreover the absolute
magnitude of the covariance measures the degree of redundancy.

If instead we wrote u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) as row vectors,
then

σ2
uv =

1
n

uvt. (3.2)

We generalize from two vectors to m vectors. Write

X =

x′1
x′2
...

x′m

where x′i is a row vector. Note that the rows of X correspond to measurements
of a particular type, and the columns of X correspond to all measurements of a
particular trail. Using Equation (3.2), we define the covariance matrix of X to be

CX =
1
n

XXt.

Lemma 3.1. 1. The matrix CX is symmetric. That is, CX = Ct
X.

14

2. The diagonal entries of CX are variances.

3. The off-diagonal entries of CX are covariances.

Recall our goal is to find a new (and better) basis {p1, p2, . . . , pm}. Namely,
we want an invertible matrix P to turn our data X into a data set Y where we can
better understand the structure. If we could do this on the level of covariance
matrices, then we could pick an ideal covariance matrix, one where the diagonal
entries are large in absolute magnitude and where the off-diagonal entries are
small in absolute magnitude. (Variances being high in magnitude suggest inter-
esting dynamics, and covariances low in magnitude suggest low redundancy.) In
other words, we would like to find a matrix P such that

CY =

λ1 0 · · · 0
0 λ2 · · · 0
...

...
0 0 · · · λm

 , (3.3)

where Y = PX. Typically we have λ1 ⩾ λ2 ⩾ · · · ⩾ λm.
The main work of PCA is finding such a matrix P. We will describe how to

construct such a P later, but let us return to our running example.
The first principal component is in the direction of the largest variance, and

the second principal component is in the orthogonal direction. So in R2, this
is quite simple. Although we have not given all the data point explicitly, the
covariance matrix is

CX =

(
1.27 2.52
2.52 5.95

)
.

The slope of the line in the direction of the highest variance is 1.98, and it passes
through the point (0, 0). By rotating and permuting, we get

P =

(
0.40 0.92
0.92 −0.40

)
,

and the graph of the data Y = PX is seen in Figure 3.3.

Remark 3.2. There is a whole art of scaling data in a pre-processing stage that
we will not explore in this course. Basically, if one variable ranges between ±10
and another ±103, the second variable will bias the process simply by its scale.
There are many different methods to rescale the data as not to lose (too much)
information. Throughout we will assume our data has roughly the same scale and not
worry about rescaling, but in practice this is an important issue.

3.1.1 Assumptions of PCA

Before we close this introduction to PCA, let us come back to some of the as-
sumptions we have made along the way. There are three key assumptions we
have made in introducing PCA. We will not focus much on these, but users of
PCA should know that assumptions have been made. These statements may not
necessarily hold for a particular data set.

15

−8 −6 −4 −2 0 2 4 6
−4

−2

0

2

4

PC1

PC
2

Figure 3.3: A new basis for our data.

1. Linearity.

This allows us to reframe the problem as a change of basis problem.

2. Large variance is important (and SNR > 1).

This can be a very strong assumption and really needs to take into account
how the data was collected.

3. Principal components are orthogonal.

This is not always the case, but orthogonality allows us to use linear algebra.

3.2 In class exercises pt. IV

1. (a) Show that CX is symmetric.

(b) Prove that the diagonal entries of CX are variances and the off-diagonal
entries are covariances.

2. Suppose X is an m × n matrix with sample mean x ∈ Rm. Let X′ be the
shifted data of X, so that its sample mean is 0. What is CX′ in terms of X
and x?

3.3 Performing PCA

At the heart of performing PCA in practice is the following question. Recall that
CY is a diagonal matrix; see the discussion around Equation (3.3).

Question 3.3. What is the relationship between CX and CY if Y = PX?

Proof. From above, we have

CY =
1
n

YYt =
1
n
(PX)(PX)t = PCXPt.

16

In order to perform a PCA, we need to find a matrix P such that PCXPt is
diagonal. Importantly, we do not want to change the variances, so we want P to
be distance preserving; that is, we want P to satisfy

∥Pv∥ = ∥v∥ (3.4)

for all vectors v ∈ Rm. We say such a matrix P is an isometry. We can take
Equation (3.4) and massage it, so that P must satisfy

vtPtPv = (Pv) · (Pv) = v · v = vtv

for all v ∈ Rm. Since this needs to hold for all vectors, it must hold for all pairs of
basis vectors (ei, ej) for all i, j ∈ {1, . . . , m}. Thus, distance preserving is equiva-
lent to PtP = Im, but these matrices are called orthogonal. (Note: pairs of distinct
columns of such a matrix P are pairwise orthogonal. Can you prove this?!)

Let us bring this back to the equation we established. We want P to be an
orthogonal matrix such that

CY = PCXPt. (3.5)

Moreover, we want CY to be a diagonal matrix. Since PtP = Im, it follows that
P−1 = Pt, so using this identity we have

CY = PCXP−1.

Since CY is diagonal, this is accomplished through eigendecomposition. Therefore,
the rows of P are eigenvectors, and the diagonal entries of CY are eigenvalues.

All the entries of CY are real, and we know that some matrices have complex
eigenvalues. For example, the matrix(

0 −1
1 0

)
has eigenvalues i and −i, for i =

√
−1.

Question 3.4. Is it always possible to find a real matrix P such that Equation (3.5)
holds?

The answer to Question 3.4 is “Yes,” and we will prove it later. For now, let us
assume it is always possible.

We give a recipe for cooking up the principal components.

Given: n data points xi ∈ Rm (of roughly the same scale),

Return: m principal components.

1. Compute the mean of each coordinate: µj = ∑i xij,

2. Organize the normalised data into a matrix X = (xij − µj),

17

3. Compute the covariance matrix CX of X,

4. Compute the eigenvectors of CX, and sort them based on their eigenvalues:
largest is first and smallest is last.

5. Return the (ordered) orthonormal basis of eigenvectors.

PCA is a phrase used for this algorithm together with its analysis, and one of
the main ways PCA is performed is by taking only the first k principal compo-
nents (rather than all m). Here, k is usually determined by the eigenvalues.

Both CX and CY have the same eigenvalues: λ1 ⩾ λ2 ⩾ · · · ⩾ λm. Since the
trace of matrix is the sum of its eigenvalues, both CX and CY have the same trace.
In other words,

tr(CX) =
m

∑
i=1

λi,

and by Lemma 3.1, the sum of the variances is the sum of the eigenvalues. Be-
cause we view variability as an important measurement to keep track of, we can
choose a k that both maximizes the amount of variability “seen” and while mini-
mizing the value of k. This is a bit more of an art than a science, but one general
rule could be to choose the smallest k such that

∑k
i=1 λi

∑m
i=1 λi

⩾ 0.95. (3.6)

For such a k, one might say that the first k principal components capture 95% of
the total variability.

Question 3.5. Are the principal components k + 1 through m useless?

3.4 Projections

The answer to Question 3.5 is essentially “Yes”, and it can be helpful to consider
an idealised example.

Recall that X is our m × n matrix whose columns are our n data points in Rm.
The matrix P is obtained from the eigenvectors of CX, which are the rows of P,
and Y = PX. Moreover, P is an orthogonal matrix. Suppose k < m and

λk+1 = λk+2 = · · · = λm = 0.

Therefore, we have

CY =

λ1
. . .

λk
0

. . .
0

.

18

Remark 3.6. In this situation, yrj = 0 for all k + 1 ⩽ r ⩽ m and all 1 ⩽ j ⩽ n. (Can
you show this?!) In other words, the “new” data point yj has a tail of zeroes.

Lemma 3.7. Let Q be the first k rows of P, so that Q is k × m. Then for all columns
xi, xj ∈ Rm of X,

dRm(xi, xj) = dRk(Qxi, Qxj).

Proof. For each column xi of X, we have Pxi = yi, where yi is the ith column of Y.
Since P is orthogonal, dRm(Pxi, Pxj) = dRm(xi, xj). Thus, by Remark 3.6

dRm(Pxi, Pxj)
2 = dRm(yi, yj)

2

=
m

∑
r=1

(yri − yrj)
2

=
k

∑
r=1

(yri − yrj)
2

= dRk(Qxi, Qxj)
2.

The key application of Lemma 3.7 is that ignoring rows k + 1 through m in
the matrix P does not change the geometry! That is, we can project the data to a
smaller dimension and distances between the data points remain unchanged!

In practice the λi are strictly greater than 0, so this idealised situation does
not occur. Using our rule in Equation (3.6), then the projected data would ap-
proximate the original geometry quite well. The larger the ratio, the better the
approximation, so there is indeed a trade off. Thus, after constructing all of the
principal components, one can take the first k, and project the original data (i.e.
the matrix X) into a smaller dimension by constructing the matrix Q from the first
k rows of P.

3.5 PCA is always possible—the Spectral Theorem

The real power of PCA is that we can always perform it. One does not need to in-
put parameters; just the data. Note there is a pre-processing stage of normalising
and rescaling, but this can be applied to all data. We address Question 3.4 which,
at the time, we just assumed was true. In order to do this, we prove the Spectral
Theorem.

Theorem 3.8 (Spectral Theorem). Let M be a real symmetric n × n matrix. Then Rn

has an orthonormal basis coming from eigenvectors of M.

Corollary 3.9. Every eigenvalue and eigenvector of a real symmetric matrix are real.

In particular, the Spectral Theorem makes principal component analysis pos-
sible since the covariance matrix is always a real symmetric matrix.

Remark 3.10. Covariance matrices are examples of positive semi-definite matrices,
which are real matrices whose eigenvalues are all real and nonnegative. We will
not need this much, nor will we prove this, but it might be useful to know that
covariance matrices are particularly nice.

19

Let’s unpack what the Spectral Theorem says exactly. Recall that an orthonor-
mal basis {b1, . . . , bn} for a vector space V satisfies

bi · bj =

{
1 i = j,
0 i ̸= j.

There are two components to being an orthonormal basis: the basis vectors are
pairwise orthogonal and each basis vector has unit length. The latter condition is
not so particularly important (though useful); really, the magic is in the pairwise
orthogonal condition.

We already saw in Section 3.3 that the Spectral Theorem does not hold if we
drop ‘symmetric’. Now we will build our way to prove the Spectral Theorem.

Lemma 3.11. Let M be a real symmetric matrix. Then eigenvectors corresponding to
distinct eigenvalues are orthogonal.

Proof. Let u and v be eigenvectors of M corresponding to λ and µ with λ ̸= µ.
Then

µutv = ut(Mv) = (utM)v = (Mu)tv = λutv.

Suppose via contradiction that utv ̸= 0, but then µ = λ, which is a contradiction,
so we must have utv = 0. Hence, u and v are orthogonal.

From Lemma 3.11, we can already prove that all eigenvalues (and therefore)
all eigenvectors are real. Before we dive into that proof, recall the operation of
complex conjugation. If a, b ∈ R, then a + bi is a complex number, and the complex
conjugate is

a + bi = a − bi.

If z ∈ C, then z = z if and only if z ∈ R.

Proposition 3.12. Let M be a real symmetric matrix. Then all eigenvalues of M are real.

Proof. Suppose Mv = λv, and assume, via contradiction, that λ ∈ C \ R. If we
apply complex conjugation to Mv = λv, we have Mv = λv. Since M is a real
matrix, M = M. Thus, we have a new eigenvector and eigenvalue of M since

Mv = λv.

The dot product of v and v is a sum of squares: suppose M is written with respect
to some basis {b1, . . . , bm}; then

v · v =
m

∑
i=1

vivi > 0.

Thus, v and v are not orthogonal, but λ ̸= λ, so we get a contradiction thanks to
Lemma 3.11. Therefore, λ ∈ R, and hence all eigenvalues of M are real.

It follows from Proposition 3.12 that all eigenvectors of a real symmetric ma-
trix are real, but we still want more—namely orthogonality.

20

Definition 3.13. Let M be an n × n matrix with entries in a field K. A subspace U
of Kn is M-invariant if Mu ∈ U for all u ∈ U.

Definition 3.14. Let U be a subspace of a vector space V. Define U⊥, sometimes
called the perp-space (or orthogonal space) of U, to be the set of all v ∈ V such
that v · u = 0 for all u ∈ U.

One thing to try on your own: Show that U⊥ is a subspace of V if U is a
subspace of V.

Lemma 3.15. Let M be an n× n real symmetric matrix. If U is an M-invariant subspace
of Rn, then U⊥ is M-invariant.

Proof. Exercise.

Lemma 3.16. Let M be an n × n real symmetric matrix. If U is a nonzero M-invariant
subspace of Rn, then U contains an eigenvector of M.

Proof. Let Q be a matrix whose columns define an orthonormal basis for U, and
assume U is m-dimensional. Thus, QtQ = Im. Since U is M-invariant, each basis
vector is mapped to some linear combination of all of the basis vectors. Therefore,
there exists an m × m real matrix N such that

MQ = QN.

Since QQt = Im, we have QtMQ = N. Because M is symmetric, so is N. By
Proposition 3.12, all the eigenvalues of N are real, and since m ⩾ 1, let 0 ̸= v ∈ Rm

such that Nv = λv for some λ ∈ R. Hence,

MQv = QNv = λQv.

Since the columns of Q are linearly independent, Qv ̸= 0 and is, therefore, an
eigenvector of M. But Qv ∈ U, so U contains an eigenvector of M.

Proof of the Spectral Theorem. We will prove this by induction on n. For n = 1,
there is nothing to prove, so we assume that the statement of the theorem holds
for n. We will show that it holds for n + 1.

Let v be an eigenvector of M, which is real by Proposition 3.12. Let U be the
subspace of Rn+1 that is orthogonal to v, so dim(U) = n. Since the span of v is M-
invariant, so is U by Lemma 3.15. By Lemma 3.16, U contains a real eigenvector
of M. By iterating this argument, U contains all other eigenvectors of M. Hence,
by induction, the statement holds.

4 Clustering

Similar to PCA, clustering is a way to understand structure of data. Clustering
or cluster analysis is a generic term for algorithms designed to partition a given
data into clusters. Clusters is a word that does not really have a precise meaning,
and its meaning might even depend on situation, but generally we intuitively
understand that clusters are groups of data points as seen in Figure 4.1.

Clustering is a fantastic tool for answering certain kinds of questions about
the data like the following.

21

x

y

Figure 4.1: Data points in R2 that form four clusters.

• What sub-populations exist in the data?

• Are there outliers?

• Are the sub-populations cohesive or can they be partitioned further?

“Populations” presupposes a certain perspective that need not be true. For exam-
ple, clustering algorithms are used on gene sequences in medicine and biological
sciences. See for example the hierarchical clustering done on sequences of genes
for breast cancer in Figure 4.2.

Figure 4.2: A hierarchical figure taken from [1]. The clusters are seen with the
different colours.

Clustering is also one of the first steps in machine learning—an example of
unsupervised learning. This just means that the machine “learns” of patterns
and structures from the unlabeled data. Sometimes data are put into clusters,
and then nearly all of the data, except for the cluster ID is discarded, which can
save significant space in the analysis stage. To quote Google [2]:

22

At Google, clustering is used for generalization, data compression,
and privacy preservation in products such as YouTube videos, Play
apps, and Music tracks.

There is no one clustering algorithm that is optimal in every situation; in fact,
because data can cluster in many different ways, one needs a whole clustering
toolkit. We will talk about two common methods for clustering: k-means and
single linkage clustering. At the core of both of these clustering algorithms is a
different assumption on the definition of a cluster.

4.1 Introduction to k-means clustering

The idea around k-means clustering is incredibly simple: group the data into k
clusters based on the shortest distance to the center of the cluster. From this,
we see how “cluster” is interpreted in the k-means algorithm—a cluster forms
a “cell” in Euclidean space and data points outside of this cell are outside of the
cluster. The shape of these cells depend on the layout of the centers of the clusters.

Before we go through the algorithm for k-means clustering, let’s explore some
of the many applications of this algorithm.

4.2 Image compression with k-means

Suppose we have a jpg file that is m × n pixels. We can turn this image file into
a 3-dimensional array, namely an m × n × 3 array. Alternatively, we can interpret
this as three m × n matrices corresponding to the red, green, and blue values of
the image.

Figure 4.3: Sherlock.

We can use k-means clustering by interpret-
ing each pixel as a data point in R3 and de-
termining clusters. Once we find our clusters,
we can replace all the pixels with the center it
is closest to. The impact is that we replace all
the different colours with exactly k colours—
essentially compressing the image.

Let’s see how this might look on one of my
photos. Meet my dog, Sherlock; he is depicted
in Figure 4.3. There is not very many colours
in the image, so we should expect that low val-
ues of k will produce an image that looks fairly
similar. Running a k-means clustering for each
k ∈ {2, . . . , 10} yields nine different images
seen in Figure 4.4.

4.3 The k-means algorithm

There are many versions of the basic algorithm we will describe. We use pseudo-
code to give the details of the algorithm; this is a way of giving the idea of the
structure of the code without diving into the specifics of any particular language.

23

Figure 4.4: k-means clustering on the image in Figure 4.3.

We provide pseudo-code for a basic k-means algorithm in Algorithm 1. The al-
gorithm returns a function Λ : {1, . . . , n} → {1, . . . , k}, which can be interpreted
as a label for the n data points. The algorithm accomplishes this by randomly
choosing the k centroids, and then clustering the data points accordingly. Once
all the data points have been labeled, we recompute the centroids by taking the
mean point of all the data points in a given cluster to be the new centroid.

In the first step of k-means (see line 1 in Algorithm 1), we randomly assign the
k centroids. For different initial assignments, one can get different outputs. This
is like trying to find global extrema on a “bumpy” graph by starting at a random
point on the graph and then looking for the nearest local extrema. There are a
number of ways to improve the k-means algorithm, we will not cover them, but
many consider different variations for their specific data at hand.

24

Algorithm 1 (Basic) k-means

Input: a positive integer k and n data points xi ∈ Rm,
Output: a map Λ : {1, . . . , n} → {1, . . . , k}.

1: Randomly assign the k centroids ci to k data points.
2: Let Λ0 and Λ be constant functions mapping to −1 and 0, respectively.
3: while Λ0 ̸= Λ do
4: Set Λ0 = Λ.
5: for i ∈ {1, . . . , n} do
6: Set Λ(i) = j if ∥xi − cj∥ = min{∥xi − cr∥ : 1 ⩽ r ⩽ k}.
7: end for
8: for i ∈ {1, . . . , k} do
9: Set ci =

(
∑j∈Λ−1(i) xj

)/
#
(
Λ−1(i)

)
.

10: end for
11: end while
12: return Λ.

4.4 A small example with k-means

We will consider 40 points in R2, which can be seen in Figure 4.5, and we will
look for 4 clusters. You might try to see how you would cluster the data.

Figure 4.5: The plotted data we will use to run a 4-means clustering.

We will randomly select four data points for our initial centroids, and then we
will group the data points into the four clusters. We will show this by colouring
the Voronoi cells different colours and indicating the centroids by white crosses.
All of the iterations of one k-means algorithm can be seen in Figure 4.6. Just to
illustrate how sensitive k-means is to the initial choice of centroids, we run the
algorithm again in Figure 4.7.

25

(a) Iteration 0 (b) Iteration 1

(c) Iteration 2 (d) Iteration 3

(e) Iteration 4 (f) Iteration 5

(g) Iteration 6

Figure 4.6: Seven iterations of one k-means algorithm.

26

(a) Iteration 0 (b) Iteration 1

(c) Iteration 2 (d) Iteration 3

Figure 4.7: Four iterations of another k-means algorithm.

27

4.5 Introduction to hierarchical clustering

Hierarchical clustering is, in some sense, the opposite approach to clustering than
k-means. We will primarily be working with Single-linkage clustering. Single-
linkage or, more generally, neighbour joining clustering is a hierarchical clustering
algorithm. With k-means, we need to give the number of clusters k in order to
run the algorithm. With neighbour joining, we look at all the possible clusterings
under prescribed conditions by means of a dendrogram. We have already seen an
example of the output of a hierarchical clustering algorithm; see Figure 4.2.

The basic idea of neighbour joining clustering is that every data point is its
own cluster and under certain conditions, two clusters are merged at each step
until all points are in one cluster. The output is not a specific clustering of the
data, but rather all the possible clusterings. This is communicated through a
dendrogram.

Before we look at the algorithm, let’s consider a specific application.

4.6 An application of hierarchical clustering

We will look at the study in [1] a little closely; see also Figure 4.2. People diag-
nosed with breast cancer can have very different clinical outcomes. We do not
really know why this is the case, but one suggestion might be that our knowl-
edge of the specific breast cancer tumors is lacking. Sotiriou et al. [1] propose
clustering the tumors by gene expression profiles, via unsupervised hierarchical
clustering.

Prior to their work, the tumors could be partitioned into two major subgroups
based on their estrogen receptors. Using clustering methods, Sotiriou et al. were
able to obtain this partition at the top of the dendrogram—if one cuts it so there
are exactly two clusters, these align with the two subgroups based on estrogen
receptors. They were able to further partition the two subgroups based on their
basal and luminal characteristics. This led to the six clusters (represented by dif-
ferent colours) in Figure 4.2. This is also in line with previous work done by dif-
ferent research teams, and offers more evidence that their hypothesis is correct—
that breast cancer tumors ought to be clustered in the established way.

4.7 The neighbour joining algorithm

We will describe a class of agglomerative algorithms that can be altered to produce
different outcomes based on certain given conditions. In order to do this, one
of the inputs is a distance function, which can be obtained from a metric. We
want the metric to be defined on finite subsets of Rm, which will be interpreted
as clusters in the actual algorithm.

Definition 4.1. A function d : M ×M → R on a set M is a metric if

1. for all X, Y ∈ M , we have d(X, Y) ⩾ 0, where equality holds if and only if
X = Y,

2. for all X, Y ∈ M , we have d(X, Y) = d(Y, X), and

28

3. for all X, Y, Z ∈ M , the triangle inequality is satisfied:

d(X, Y) + d(Y, Z) ⩾ d(X, Z).

Functions satisfying (1) and (2) are called semimetrics.

Lemma 4.2. The Euclidean distance d(x, y) = ∥x − y∥ is a metric on Rm. The square
of the Euclidean distance, d□(x, y) = ∥x − y∥2, is not a metric but a semimetric.

Proof. To show that d□ does not satisfy the triangle inequality, let a ∈ R be posi-
tive. Then | − a|2 + |a|2 < |2a|2, so

d□(a, 0) + d□(−a, 0) < d□(a,−a).

In the context of clustering, having a metric is not necessary. For example,
because x 7→ x2 is monotonically increasing on the R⩾0, it follows that d(x, y) <
d(u, v) if and only if d□(x, y) < d□(u, v); here we are using the notation from
Lemma 4.2. Thus, it is irrelevant if we cluster two points based on d or d□, so we
allow our distance functions to come from semimetrics.

Let’s write Fm for the set of finite subsets of Rm, so we will describe a few
distance functions on Fm.

Single-linkage: For C1, C2 ∈ Fm,

d(C1, C2) = min {∥x − y∥ : x ∈ C1, y ∈ C2} .

Complete-linkage: For C1, C2 ∈ Fm,

d(C1, C2) = max {∥x − y∥ : x ∈ C1, y ∈ C2} .

Average-linkage: For C1, C2 ∈ Fm,

d(C1, C2) =
1

#C1 · #C2
∑

x∈C1

∑
y∈C2

∥x − y∥.

Technically the single-linkage is not a semimetric: if C1 ∩ C2 ̸= ∅ yet C1 ̸= C2,
then d(C1, C2) = 0. However we only consider sets C1 and C2 with trivial inter-
section anyways, so this problem is avoided.

Lemma 4.3. The complete-linkage function defines a metric on Fm.

There are of course other distances one could use. Single-linkage clustering,
or nearest neighbour, corresponds to neighbour joining with the single-linkage
metric. Likewise, complete-linkage clustering, or farthest neighbour, corresponds
to neighbour joining with the complete-linkage metric. One could design a metric
that might be most relevant for the particular data set at hand.

The output for a hierarchical clustering algorithm is a dendrogram or data
equivalent to one. Figure 4.2 contains one example. Another very similar ex-
ample is a phylogenetic tree seen in Figure 4.8.

29

Figure 4.8: A phylogenetic tree is equivalent to a dendrogram.

To read a dendrogram, one first finds the many leaves or ends—often these are
labeled—these are the initial clusters. As one goes through the dendrogram (e.g.
bottom to top or left to right), clusters get linked, which is depicted by joining
the ends of the initial clusters. This happens until there is exactly one cluster left.
Two ends are closer (or more similar) if they become joined early on compared to
two ends that only become joined near the end of the dendrogram.

Let’s explain the algorithm using pseudo-code. Instead of outputting a den-
drogram, we will output a list of pairs of the form (t, [C1, . . . , Cr]), where t ⩾ 0
and each Ci is a finite set of data points. This list will start with (0, [C1, . . . , Cn]),
where each Ci is a singleton, and it will end with (t∞, [C1]), where C1 contains all
of the data points. Note that this data is also equivalent to a dendrogram.

Algorithm 2 Neighbour joining

Input: a semimetric d : Fm ×Fm → R and n data points xi ∈ Rm,
Output: a list D equivalent to a dendrogram.

1: Set t = 0.
2: Set C = {{x1}, . . . , {xn}}.
3: Set D = [(t, C)].
4: while #C > 1 do
5: Construct distance matrix M = (Mij), with Mij = d(Ci, Cj).
6: Determine the two closest distinct clusters Cr and Cs from M.
7: Set t = t + Mrs.
8: Set C = (C \ {Cr, Cs}) ∪ {Cr ∪ Cs}.
9: Append to D the pair (t, C).

10: end while
11: return D.

We will soon go through Algorithm 2 on a small example. Unlike k-means,

30

neighbour joining is deterministic; that is, it runs the same every time on the same
input. Notice in Algorithm 2 that the actual points xi do not matter; instead,
it’s the distances between the points (and clusters) that matter. Thus, we won’t
specify points but a graph.

Definition 4.4. A (finite, simple) graph G is a pair of vertices V = {v1, . . . , vn}
and edges E = {e1, . . . , ek}, where each ei ⊆ V of size exactly two. Vertices vi and
vj are adjacent, written vi ∼ vj, if {vi, vj} ∈ E.

Graphs are ubiquitous in mathematics and computer science, and they can be
easily visualised (for a relatively small amount of vertices). Three graphs can be
seen in Figure 4.9.

v1

v2

v3

v4 v5

G1

v1

v2v3

v4

v5 v6

G2

v1v2

v3 v4

G3

Figure 4.9: Three different graphs.

4.8 A small example of hierarchical clustering

31

References
[1] Christos Sotiriou, Soek-Ying Neo, Lisa M. McShane, Edward L. Korn, Philip M. Long, Amir

Jazaeri, Philippe Martiat, Steve B. Fox, Adrian L. Harris, and Edison T. Liu, Breast cancer clas-
sification and prognosis based on gene expression profiles from a population-based study, Proceedings
of the National Academy of Sciences 100 (2003), no. 18, 10393–10398.

[2] Google, What is Clustering? (2023), date accessed: 16 Oct. 2023. https://developers.google.
com/machine-learning/clustering/overview.

[3] Dan Margalit and Joseph Rabinoff, Interactive Linear Algebra, 2019, https://textbooks.math.
gatech.edu/ila/.

[4] Jonathon Shlens, A tutorial on principal component analysis, 2014, arXiv:1404.1100.

32

https://developers.google.com/machine-learning/clustering/overview
https://developers.google.com/machine-learning/clustering/overview
https://textbooks.math.gatech.edu/ila/
https://textbooks.math.gatech.edu/ila/
https://arxiv.org/abs/1404.1100

	Introduction
	Least squares fitting
	Build up
	Line of best fit
	In class exercises pt. I
	Plane of best fit
	Hyperplane of best fit
	Why eqn:general-OLS works
	In class exercises pt. II
	Nonlinear fittings
	Coefficient of determination (r2 values)
	In class exercises pt. III

	Principal component analysis
	Introducing PCA
	In class exercises pt. IV
	Performing PCA
	Projections
	PCA is always possible—the Spectral Theorem

	Clustering
	Introduction to k-means clustering
	Image compression with k-means
	The k-means algorithm
	A small example with k-means
	Introduction to hierarchical clustering
	An application of hierarchical clustering
	The neighbour joining algorithm
	A small example of hierarchical clustering

