CS3101: ASSIGNMENT 4

DEADLINE: 29 MAR AT 17:00

Description: Create two different Jupyter notebooks (ipynb files). These should be self-contained, and all computations done exclusively in these notebooks.

Notebook 1: Write a SageMath function that takes three arguments: an integer n, an integer k, and a string t. The function should return the polynomial expression for the wonderful (n, k)-polynomial in the variable determined by t. The wonderful (n, k)-polynomial $W_{n, k}(t)$ is defined as follows:
$W_{n, k}(t)= \begin{cases}\frac{\left(1-t^{n}\right)\left(1-t^{n-1}\right) \cdots\left(1-t^{n-k+1}\right)}{\left(1-t^{k}\right)\left(1-t^{k-1}\right) \cdots(1-t)} & \text { if } 0<k \leqslant n, \\ \frac{\left(1-t^{-2 n}\right)\left(1-t^{2-2 n}\right) \cdots\left(1-t^{2 k-2 n-2}\right)}{\left(1-t^{-k}\right)\left(1-t^{1-k}\right) \cdots(1-t)} & \text { if } n \leqslant k<0, \\ 1 & \text { if } k=0, \\ 0 & \text { otherwise. }\end{cases}$
Note: the first two expressions have exactly k factors in the numerator and denominator.
Use your function to do the following for each $m \in\{1, \ldots, 10\}$:
(i) determine the coefficient of $t^{2 m^{2}}$ in $W_{4 m, 2 m}(t)$.
(ii) compute the difference $W_{2 m, m}(t)-W_{-m,-m}(t)$.

Notebook 2: Write a function that takes an $n \times 3$ matrix with integer entries, for a positive integer n, and provides a report for the polytope P obtained from the convex hull of the rows of the given matrix. The function should return the wireframe plot of P. The report should print the following information.
(i) the list of vertices of P as vectors,
(ii) the volume of P, and
(iii) the centroid of P.

Use your function on two different 3-dimensional polytopes.
Submission: Submit only the two ipynb files. This can be done by uploading each file separately, or by putting the files into a zip file, which is then uploaded.

Grading: Some important points about the grading of this assignment.

- If the SageMath code raises errors, marks will be deducted.
- Marks will be deducted for omitting meaningful computations.

