DEADLINE: 29 MAR AT 17:00

Description: Create two different Jupyter notebooks (ipynb files). These should be self-contained, and all computations done exclusively in these notebooks.

Notebook 1: Write a SageMath function that takes three arguments: an integer *n*, an integer *k*, and a string *t*. The function should return the **polynomial expression** for the *wonderful* (n,k)-*polynomial* in the variable determined by *t*. The wonderful (n,k)-polynomial $W_{n,k}(t)$ is defined as follows:

$$W_{n,k}(t) = \begin{cases} \frac{(1-t^n)(1-t^{n-1})\cdots(1-t^{n-k+1})}{(1-t^k)(1-t^{k-1})\cdots(1-t)} & \text{if } 0 < k \le n, \\ \frac{(1-t^{-2n})(1-t^{2-2n})\cdots(1-t^{2k-2n-2})}{(1-t^{-k})(1-t^{1-k})\cdots(1-t)} & \text{if } n \le k < 0, \\ 1 & \text{if } k = 0, \\ 0 & \text{otherwise.} \end{cases}$$

Note: the first two expressions have exactly *k* factors in the numerator and denominator.

Use your function to do the following for each $m \in \{1, ..., 10\}$:

- (*i*) determine the coefficient of t^{2m^2} in $W_{4m,2m}(t)$.
- (ii) compute the difference $W_{2m,m}(t) W_{-m,-m}(t)$.

Notebook 2: Write a function that takes an $n \times 3$ matrix with integer entries, for a positive integer n, and provides a report for the polytope P obtained from the convex hull of the rows of the given matrix. The function should **return the wireframe plot** of P. The report should print the following information.

(*i*) the list of vertices of *P* as vectors,

- (*ii*) the volume of *P*, and
- (*iii*) the centroid of *P*.

Use your function on two different 3-dimensional polytopes.

Submission: Submit only the two ipynb files. This can be done by uploading each file separately, or by putting the files into a zip file, which is then uploaded.

Grading: Some important points about the grading of this assignment.

- If the SageMath code raises errors, marks will be deducted.
- Marks will be deducted for omitting meaningful computations.

Date: March 1, 2024.