Problem Set 4

Each problem is worth 2 points. The set is due on Wednesday 20 May by 23:59.

1. Consider the dynamical system defined by $f: \mathbb{R} \rightarrow \mathbb{R}$, where

$$
f(x)= \begin{cases}1 & \text { for } 1 / 4<x<1 \\ 1 / 2 & \text { for } x \in\{1 / 4,1\} \\ 0 & \text { otherwise }\end{cases}
$$

(a) Sketch the graph and the phase portrait.
(b) Find the fixed points of f and describe their properties (i.e. stable, attracting, unstable, repelling).
(c) Find the periodic orbits of f and describe their properties (i.e. stable, attracting, unstable, repelling).
2. Consider the dynamical system defined by $x_{n+1}=a x_{n}+b$. Use induction to prove that for all $n \in \mathbb{N}$,

$$
x_{n}= \begin{cases}x_{0}+n b & \text { if } a=1 \\ a^{n}\left(x_{0}-\frac{b}{1-a}\right)+\frac{b}{1-a} & \text { if } a \neq 1\end{cases}
$$

3. (a) Prove that $x=0$ is an attracting fixed point of the dynamical system defined by $f: \mathbb{R} \rightarrow \mathbb{R}$ via $f(x)=\sin \left(x^{2}\right)$.
(b) Consider the system defined by $g: \mathbb{R} \rightarrow \mathbb{R}$ via $g(x)=\cos x$. By plotting $y=g(x)$ and $y=x$ on the same set of axes, show that g has one fixed point, $\bar{x} \in(0, \pi / 2)$. Without attempting to calulate the value of \bar{x}, prove that it is an attracting fixed point.
(c) Show that for all $b \in(0,1), g(x)=\cos (b x)$ has an attracting fixed point in $(0, \pi / 2)$. What can happen for $b>1$?
(Hint: to prove existence, consider $h(x)=g(x)-x$ and apply the Intermediate Value Theorem.)
4. Consider the discrete dynamical system defined by the function $f: \mathbb{R} \rightarrow \mathbb{R}$, for $a \in \mathbb{R}$,

$$
f(x)=a x+x^{2}
$$

Find the fixed points and describe how their properties depend on the value of a.

