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Chapter 1

Introduction to dynamical systems

The fundamental idea of the course is to use mathematics to make predictions about the future.
We do this all the time in many different contexts. For example:

(Finance) Trajectory of interest rates, inflation rate, and GDP,

(Finance) Call options for stocks,

(Biology) Spread of infectious diseases,

(Biology) Population growth,

(Physics) Heat transfer,

(Physics) Positions and velocities of planets and stars.

These are examples of different kinds of systems.

Definition 1.1. A system is a set of measurable quantities, and a dynamical system is a
system that changes over time.

In order to analyze systems, we build (mathematical) models. There is no such thing as a
perfect model! But we can build some incredibly accurate models for some systems.

Definition 1.2. The state of a system is the set of values describing the system at that time.

If we know the state of a system at some time t = t0, the model allows us to predict the
state of the system at some future time t = tn. Every dynamical system consists of two parts:

1. the state space: the set of all possible states of the system and

2. the time evolution rule: the rule (function) that describes how the states of the system
change over time.

A time evolution rule may take various forms, but we often try to convert it to one that gives
the state of the system at a general time t in terms of an initial state.

1.1 Discrete and continuous time dynamical systems

Dynamical systems are classified as either discrete or continuous based on the nature of how the
system changes over time.

Definition 1.3. A discrete (time) dynamical system is a dynamical system that changes
state in discrete time steps. For example at t0, t1, t2, . . . .

1



2 CHAPTER 1. INTRODUCTION TO DYNAMICAL SYSTEMS

Consider, for example, the balance of a savings account where interest is compounded
monthly. Discrete systems can be described by difference equations or recurrence relations.

Definition 1.4. A continuous (time) dynamical system is a dynamical system that changes
state continuously over time.

Consider, for example, the position of a swinging pendulum, or the value of a commodity.
Such systems can be described by differential equations. We now consider some more detailed
examples of dynamical systems.

1.1.1 Newton–Raphson method

The Newton–Raphson method is an iterative numerical method for finding real roots of differ-
entiable functions. It was first developed by Newton in Method of Fluxions around 1671 but
published after Raphson’s version around 1690, which is simpler than Newton’s.

Let f : R → R be a differentiable function with a real root x̄. Given a point xn ∈ R, we
denote by Tn the tangent line to the curve f at the point (xn, f(xn)). We define a new point
xn+1 ∈ R to be the intersection of this tangent line with the x-axis.

Recall, the slope of the tangent line is Tn(x) is equal to the slope of the curve f at (xn, f(xn)).
With Tn(x) = mx+ c, we have

m = f ′(xn), f(xn) = mxn + c,

which gives c = f(xn)− f ′(xn)xn. The equation of the tangent line is therefore

Tn(x) = f ′(xn)x+ f(xn)− f ′(xn)xn

= f ′(xn)(x− xn) + f(xn).

This line intersects the x-axis when Tn(x) = 0. This occurs when

x = xn −
f(xn)

f ′(xn)
.

Thus, we set

xn+1 = xn −
f(xn)

f ′(xn)
, (1.1)

and we iterate this process to numerically approximate the root of f “near” some initial guess.

x

y

x0x1x2

Figure 1.1: Illustrating the first few iterations of the Newton–Raphson method.

So how is this a dynamical system? The quantity that we are describing is the approximate
value of the root. The state of the system at time (step) n is xn, which may be any real number.

https://en.wikipedia.org/wiki/Newton%E2%80%93Raphson_method
https://en.wikipedia.org/wiki/Isaac_Newton
https://en.wikipedia.org/wiki/Joseph_Raphson
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So the state space of the system is R. The dynamical system is discrete since there is one step
after another, and the time evolution rule is given by equation (1.1).

We start the iteration with an initial value x0, the initial state of the system. This value
determines whether or not the state converges to the actual root of the function. There are
continuous functions for which no starting value will converge; see the exercises.

1.1.2 Exponential growth and decay

Sometimes we may choose whether to model a dynamical system with discrete or continuous
time. In the next two examples, we compare discrete and continuous models of the same system
concerning exponential growth/decay. This system is one of the most basic and fundamental
systems.

First, we consider the discrete system. Let a ∈ R+, x0 ∈ R, and for all n ∈ N,

xn+1 = axn, (1.2)

By iterating, we get

x1 = ax0

x2 = ax1 = a2x0

x3 = ax2 = a3x0

...

xn = axn−1 = anx0.

Now we explore the qualitative behavior of this system for different values of the constant a.

Case 1: a = 1. Then for all n ∈ N, xn = x0, so the system is constant. This is uninteresting.

Case 2: a > 1. We consider three different cases based on the initial value x0.

� If x0 = 0, then xn = 0 for all n ∈ N. We say that x = 0 is a fixed point.

� If x0 > 0, then xn > xn−1 for all n. That is, the sequence (xn)n∈N is monotone
increasing and xn →∞ as n→∞.

� If x0 < 0, then xn < xn−1 for all n. That is, the sequence (xn)n∈N is monotone
decreasing and xn → −∞ as n→∞.

We will discuss this in more detail later, but for now we call x = 0 an unstable fixed
point since the system is “going away” from x = 0. If the system has the state x = 0,
then it will stay there. If we start the system just a small distance away from x = 0, then
the value moves further away from this point.

Case 3: 0 < a < 1. As in the case above, we consider three different situations.

� If x0 = 0, then xn = 0 for all n ∈ N.

� If x0 > 0, then 0 < xn < xn−1 for all n, and xn → 0 as n→∞.

� If x0 < 0, then 0 > xn > xn−1 for all n, and xn → 0 as n→∞.

In this case, we say that x = 0 is a stable fixed point since the system is “coming
towards” x = 0. We can perturb the starting point away from the state x = 0, and the
system will evolve back to the state x = 0.

https://en.wikipedia.org/wiki/Exponential_growth
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Remark 1.5. The equation xn+1 = axn is called a difference equation as we can write it in
the form of a difference:

xn+1 − xn︸ ︷︷ ︸
difference

= axn − xn = (a− 1)xn = λxn. (1.3)

The change in state—that is, the difference between the next state xn+1 and the current state
xn—depends on the constant λ = a− 1 and the current state xn.

Now we turn to the continuous version of the exponential growth/decay system. We will
denote the state of the system at time t by x(t) and the initial state, as above, by x0 = x(0).
The change in the state of the system still depends on the current state and a constant, but
as the change is considered to be continuous, we use a derivative rather than a difference. The
growth/decay equation (1.3) then becomes

x′(t) :=
dx

dt
= λx(t) . (1.4)

To convert the time evolution rule into a more “useful” form, we solve the differential equation.
Equation (1.4) becomes

x′(t)

x(t)
= λ. (1.5)

Now we can integrate both sides of (1.5) with respect to t. Notice we will get two constants of
integration, one on the left and one on the right.∫

x′(t)

x(t)
dt =

∫
λ dt

log |x(t)|+ C0 = λt+ C1

log |x(t)| = λt+ C

x(t) = eλt+C

x(t) = Deλt,

where D = eC is some constant. Setting t = 0 we see that x0 = x(0) = D, so we have

x(t) = x0e
λt.

This form allows us to examine the behavior of the system for different values of λ and initial
states x0. We will analyze this system like we did with the discrete system.

Case 1: λ = 0. Then x(t) = x0 for all t, so the system does not change.

Case 2: λ > 0. As with the discrete case, x = 0 is an unstable fixed point.

� If x0 = 0, then for all t, x(t) = 0.

� If x0 > 0, then x(t)→∞ as t→∞.

� If x0 < 0, then x(t)→ −∞ as t→∞.

Case 3: λ < 0. This implies that eλt is monotone decreasing, so x(t) → 0 as t → ∞. Thus,
x = 0 is a stable fixed point.

The discrete and continuous versions of this system exhibit similar qualitative behavior. We
summarize with Table 1.1.
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Discrete Continuous

Model: xn = anx0 Model: x(t) = x0e
λt

a = 1: static system λ = 0: static system

a > 1: exponential growth; λ > 0: exponential growth;

unstable fixed point at x = 0 unstable fixed point at x = 0

0 < a < 1: exponential decay; λ < 0: exponential decay;

stable fixed point at x = 0 stable fixed point at x = 0

Table 1.1: A comparison of the discrete and continuous models of the same exponential system.

1.1.3 The logistic map

We conclude this chapter with a very powerful and easy to describe model, called the logistic
map. We now consider an example where the discrete and continuous versions differ quite
dramatically.

Continuous version

This time, we begin with the continuous case. Set

x′(t) = λx(t) (1− x(t)) , (1.6)

where x(0) = x0 > 0 and λ > 0.

Because Equation (1.6) is a differential equation, it does not explicitly give us a model for
the system—it only describes how the models changes with time. To analyze our system, we
again solve the differential equation; solving for the functions x(t) that satisfy Equation (1.6).

We first rewrite (1.6) to get all the variables depending on t to one side:

x′

x(1− x)
= λ. (1.7)

Like before in Example 1.1.2, we integrated Equation (1.4) to solve the differential equation.
The challenge here is slightly different: we need an antiderivative∫

dx

x(1− x)
.

One way to solve this is via partial fraction decomposition. We will solve this integral this way;
since this is covered in a calculus class, we will omit some details.

We solve for A and B such that

1

x(1− x)
=
A

x
+

B

1− x
.

This is equivalent to solving for A and B such that

1 = A(1− x) +Bx,

and by substituting x = 0 we get A = 1; substituting x = 1 gives B = 1. Hence we have

1

x(1− x)
=

1

x
+

1

1− x
.

https://en.wikipedia.org/wiki/Logistic_map
https://en.wikipedia.org/wiki/Logistic_map
https://en.wikipedia.org/wiki/Partial_fraction_decomposition
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Therefore, Equation (1.7), can be written as

x′

x
+

x′

1− x
= λ. (1.8)

Each of the fractions in (1.8) can now be easily integrated, so we integrate both sides with
respect to t. (Since we are integrating both sides, we will just write one constant of integration
on the right side.) ∫

x′

x
dt+

∫
x′

1− x
dt =

∫
λ dt

log |x| − log |1− x| = λt+ C

log

∣∣∣∣ x

1− x

∣∣∣∣ = λt+ C

x

1− x
= Deλt

x = (1− x)Deλt

(1 +Deλt)x = Deλt

x(t) =
Deλt

1 +Deλt
.

The initial condition x(0) = x0 implies that

x0 = x(0) =
D

1 +D

(1 +D)x0 = D

x0 = D(1− x0)
x0

1− x0
= D.

Putting our work together we obtain the family of solutions

x(t) =
Deλt

1 +Deλt
=

(
x0

1−x0

)
eλt

1 +
(

x0
1−x0

)
eλt

, (1.9)

which is equivalent to

x(t) =
x0e

λt

1− x0 + x0eλt
. (1.10)

For large positive t, Equation (1.9) implies that

x(t) =
Deλt

1 +Deλt
= 1− 1

1 +Deλt
≈ 1−D−1e−λt.

Now we look at how the system behaves depending on its initial state. Consider four different
cases for positive x0.

Case 1: x0 = 0. From (1.9), x(t) = 0 for all t, so x = 0 is a fixed point.

Case 2: 0 < x0 < 1. By (1.9), D > 0, and therefore x(t)→ 1 as t→∞.

Case 3: x0 = 1. From (1.9), x(t) = 1 for all t. So x = 1 is a fixed point.

Case 4: x0 > 1. We have D < 0, and x(t)→ 1 as t→∞.

Thus, x = 0 is an unstable fixed point, and x = 1 is a stable fixed point. This can be seen in
the plot in Figure 1.2.
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t

x

1

x(t) =
eλtD

1 + eλtD

Figure 1.2: Two solutions to the logistic system with different initial conditions. When 0 <
x0 < 1, the solution’s graph looks similar to the red graph. When x0 > 1, the solution’s graph
looks similar to the blue graph.

Discrete version

Turning now to the discrete version of the logistic map, we write a discrete version of (1.6):

xn+1 − xn = λxn(1− xn). (1.11)

We rewrite the logistic equation to get

xn+1 − xn = λxn(1− xn)

xn+1 = xn(λ+ 1− λxn)

xn+1 = (λ+ 1)xn

(
1−

(
λ
λ+1

)
xn

)
.

Setting yn =
(

λ
λ+1

)
xn,

(
λ+1
λ

)
yn+1 =

(
(λ+1)2

λ

)
yn (1− yn)

yn+1 = (λ+ 1)yn (1− yn) ,

or when a = λ+ 1,
yn+1 = (λ+ 1)yn(1− yn) = ayn(1− yn). (1.12)

The discrete version of the logistic system is nonlinear as the right side of (1.12) is quadratic
in the variable yn. This makes finding solution functions much harder than our exponential
model in Section 1.1.2, but it might be a more accurate model since many phenomena are more
accurately modeled with nonlinear systems.

We still want to gain some understanding of this system, so we look at the special case,
when a = 41 and yn = sin2(ψn) for each n. Then

sin2(ψn+1) = yn+1

= 4yn(1− yn)

= 4 sin2(ψn)(1− sin2(ψn))

= 4 sin2(ψn) cos2(ψn)

= sin2(2ψn).

The equation sin2(ψn+1) = sin2(2ψn) holds only when ψn+1 = ±2ψn + kπ, for some k ∈ Z. We
choose ψn+1 = 2ψn, so ψn = 2nψ0. Therefore,

yn = sin2(2nψ0). (1.13)

Now we consider some possible initial states; note that we will not cover all possibilities.

1For those interested, the behavior depending on a is very chaotic.

https://en.wikipedia.org/wiki/Logistic_map#Behavior_dependent_on_r
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Case 1: ψ0 = 0. This gives yn = 0 for all n, so y0 = 0 is a fixed point.

Case 2: ψ0 = π
2 . This implies that y0 = 1 and y1 = 0. By (1.12), yn = 0 for all n ≥ 1.

Case 2′: ψ0 = mπ
2k

, where m, k ∈ Z such that m is odd and k > 0. Substituting into (1.13),

yn = sin2

(
2nmπ

2k

)
.

Like in Case 2, for all n ≥ k, yn = 0, so after a finite number of steps, the system stabilizes
at y = 0.

Case 3: ψ0 = mπ
k , where m, k ∈ Z such that k is odd. Notice that sin2(θ) = sin2(θ + π) for all

θ ∈ R. We use this fact to show that we have a periodic solution. If m > k, then let q be
the largest integer such that qk ≤ m, and let r = m− qk where 0 ≤ r < k. Then

sin2

(
2nmπ

k

)
= sin2

(
2nrπ

k
+ 2nqπ

)
= sin2

(
2nrπ

k

)
. (1.14)

Therefore, this is system is equivalent to the system with initial condition rπ
k , and 0 ≤ r <

k. So without loss of generality, we assume that we start with mπ
k , where m < k.

At each time step, we multiply the fraction m
k by 2, and because of (1.14), we are only

concerned with the remainder of 2nm after dividing by k as much as possible. In other
words, we are only concerned with the integer 2nm modulo k2. Since there are only finitely
many positive integers less than k, there can only be finitely many different values for yn.
Because this comes from the remainder by k, this will form a periodic solution . Thus,
there exists a positive integer N such that for all n ≥ 0, yn+N = yn. We look at two
concrete cases.

Example 1.6. Let ψ0 = π
3 , so m = 1 and k = 3.

n 2nm (mod k) yn

0 1 3/4

1 2 3/4

2 1 3/4

Even though it took us two steps to get back to the same remainder we started with, the
function yn remained constant (any ideas why?). �

Example 1.7. Let ψ0 = 2π
11 , so m = 2 and k = 11.

n 2nm (mod k) yn

0 2 sin2(2π/11) ≈ 0.29

1 4 sin2(4π/11) ≈ 0.83

2 8 sin2(8π/11) ≈ 0.57

3 5 sin2(16π/11) ≈ 0.98

4 10 sin2(32π/11) ≈ 0.08

5 9 sin2(64π/11) ≈ 0.29

If you correctly determined why Example 1.6 was constant, then the same reasoning can
be applied here to show that the period is N = 5. That is, once we have made 5 steps,
the values yn will continue to repeat itself. �

2This is known as modular arithmetic, and remainders are written 2nm (mod k) in this example.

https://en.wikipedia.org/wiki/Modular_arithmetic
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Case 4: ψ0 = mπ
2`k

, where m, k, ` ∈ Z such that m, k, ` > 0 and k is odd. After ` steps, a
“periodic orbit,” also known as a cycle, is reached. (Try this for yourself.)

Case 5: ψ0 = c · π, where c ∈ R \ Q: In this case the orbits are more complicated—they may
be dense.

In the discrete case the behavior varies greatly with the initial conditions and there are many
more possible paths for the system. Why is there such a distinct difference? We will not fully
answer this question, but we can already understand one of the main reasons.

We considered the continuous system

x′(t) = λx(t)(1− x(t))

and the related discrete system yn+1 = ayn(1− yn), which is equivalent to

xn+1 − xn = λxn(1− xn),

for a = λ + 1 and yn = λ
λ+1xn. We looked at the case a = 4, that is, λ = 3. However, for the

discrete system to be a good approximation of the continuous system—that is, for the difference
to be a good approximation of the derivative—we need the difference, xn+1 − xn, to be small.
This is true if and only if λ is small. In our discrete example, λ = 3, which is not small enough
to approximate a derivative.

Discrete version (again!)

We are coming back to the discrete version again, but now we will consider the system yn+1 =
ayn(1− yn) for some fairly small values of λ. We hope to see a more pronounced connection to
the continuous version, summarized in the following table.

Continuous Discrete

λ a = λ+ 1

x(t) yn = λ
1+λxn

Unstable fixed point at x = 0 Fixed point y = 0 for all λ

Stable fixed point at x = 1 Fixed point y = λ
1+λ

for λ ∈ (0, 1)

Let λ ∈ (0, 1), so that a ∈ (1, 2) and 0 ≤ λ
λ+1 = a−1

a < 1
2 . Define a function fa : R→ R by

fa(y) := ay(1− y).

Then for y ∈ (0, 1),

0 < fa(y) ≤ a

4
< 1,

as the function has maximum fa(
1
2) = a

4 . This can be seen in Figure 1.3. Observe also that

� the function fa is strictly increasing on the interval (0, 1/2) and

� the function fa is strictly decreasing on the interval (1/2, 1).

We use fa to derive a discrete system: yn+1 = fa(yn) for all n ≥ 0.
Recall that a function f(x) is monotonically increasing3 if for all pairs x1, x2 in the

domain of f , f(x1) ≤ f(x2) implies that x1 ≤ x2. A similar definition follows for monoton-
ically decreasing. Analogous definitions hold for sequences as well. The sequence (xn)∞n=0 is
monotonically increasing if for all n,m ≥ 0, xn ≤ xm implies that n ≤ m.

We will briefly analyze the discrete system for different initial conditions yo ∈ [0, (a− 1)/a].

3In case you want more details.

https://en.wikipedia.org/wiki/Monotonic_function
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y

fa(y)

1
2

a
4

a−1
a

Figure 1.3: The plot of the function fa(y) for some a ∈ (1, 2) is given in red, and the plot of
g(y) = y is given in blue.

Case 1: y0 = 0. This implies that yn = 0 for all n, so y = 0 is a fixed point.

Case 2: y0 = a−1
a . This condition implies that

y1 = fa(y0) = a

(
a− 1

a

)(
1− a− 1

a

)
=
a− 1

a
.

Thus, y = a−1
a is also a fixed point.

Case 3: y0 ∈ (0, (a−1)/a). We will prove that yn is monotonically increasing and yn → (a−1)/a
as n→∞.

Case 4: a−1
a < y0 <

1
2 . This will be proved in the homework and is similar to Case 3.

To prove the claim in Case 3, we split up the proof into a few lemmas.

Lemma 1.8. In Case 3, for all n ≥ 0,

0 < yn <
a− 1

a
. (1.15)

Proof. Since 0 < fa(y) < 1 for 0 < y < 1, it follows that 0 < yn. So we just need to prove the
second inequality: yn < (a − 1)/a, for all n. We do this by induction on n. For the base case,
n = 0,

y0 <
a− 1

a

which follows from our assumption in Case 3. Now assume that (1.15) holds for n, and we
will show that it holds for n + 1. Recall that fa is monotonically increasing on (0, (a − 1)/a).
Therefore,

yn+1 = fa(yn) (definition)

< fa

(
a− 1

a

) (
induction step
and monotone

)
=
a− 1

a
. (evaluate)

Thus, yn+1 < (a− 1)/a, and so by induction this holds for all n ≥ 0.

Lemma 1.9. In Case 3, the sequence (yn)∞n=0 is monotonically increasing.

Proof. By Lemma 1.8, −yn > −(a− 1)/a, so

yn+1 = ayn(1− yn)

> ayn

(
1− a− 1

a

)
= yn.
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Proposition 1.10. In Case 3,

lim
n→∞

yn =
a− 1

a
.

Proof. From Lemmas 1.8 and 1.9, the sequence (yn) is monotonically increasing and bounded
above. Therefore, the limit exists.

Let
y∗ := lim

n→∞
yn.

Since fa is continuous,

y∗ = lim
n→∞

yn = lim
n→∞

yn+1 = lim
n→∞

fa(yn) = f
(

lim
n→∞

yn

)
= fa(y∗).

Hence y∗ is a fixed point, and thus

y∗ = ay∗(1− y∗).

Therefore, we have two different cases: either y∗ = 0 or 1 = a(1 − y∗). But by Lemma 1.8,
yn > 0 for all n, and by Lemma 1.9, (yn) is increasing. Thus, it is not possible that y∗ = 0.
Hence, 1 = a(1− y∗), so

y∗ =
a− 1

a
.

To finish out the final case, Case 4, we prove similar statements that we proved above.

Proposition 1.11. In Case 4, for all n ≥ 0,

(i)
a− 1

a
< yn <

1

2
,

(ii) the sequence (yn) is monotone decreasing, and

(iii) lim
n→∞

yn =
a− 1

a
.

Proof. Exercise.

From Propositions 1.10 and 1.11, for an initial state y0 in the interval (0, 1/2), we have
yn → a−1

a . Thus for 1 < a < 2, y = a−1
a is a stable fixed point of the system and y = 0 is an

unstable fixed point, which matches more closely the continuous version of the logistic map.
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Chapter 2

Discrete dynamical systems

We begin with some basic notation and definitions. As usual, the composition of functions
f, g : Rd → Rd is denoted by f ◦ g, where f ◦ g(x) := f(g(x)). The identity function is denoted
by id, and it always satisfies id(x) = x for all x. The composition of f with itself n times is

fn := f ◦ f ◦ . . . ◦ f︸ ︷︷ ︸
n times

,

for n ∈ N, and f0 := id. If the inverse of f exists, we denote it by f−1. That is, f−1 is the
function such that f−1 ◦ f = f ◦ f−1 = id. Then we have

f−n = f−1 ◦ f−1 ◦ . . . ◦ f−1︸ ︷︷ ︸
n times

.

Note that fn(x) = f(f(. . . f(x) . . .)) 6= (f(x))n.

Definition 2.1. Let X ⊆ Rd and f : X → X. The expression

xn+1 = f(xn) (2.1)

is called a difference equation . The set X is the state space (or phase space) of the system,
and any sequence (xn)∞n=0 satisfying (2.1) is called a solution of (2.1). If the expression f(xn)
is independent of n, that is, if the rule (2.1) is independent of the time, then the system is called
a discrete autonomous dynamical system .

Note that the function f may depend on extra parameters from some set Y . That is, in
general f : Y ×X → X. We saw this in Section 1.1.3 for example.

Example 2.2.

(i) The discrete exponential growth/decay system of Section 1.1.2 is an autonomous system
as we have xn+1 = axn. In other words, f(x) := ax, and the value of f depends on a value
from the state space, x, and on another parameter, a, but is independent of n.

(ii) An example of a non-autonomous system is

xn+1 := (n+ 1)xn.

Here, rather than one function f , we have a system of functions: fn(x) = (n+ 1)x, and

xn = nxn−1 = n(n− 1)xn−2 = . . . = n!x0.

Remark 2.3. For the next two points, we assume that (2.1) defines an autonomous system.

13
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(i) For any initial state x0, we have the sequence x0, x1 = f(x0), x2 = f(x1), and so on. Thus
for any initial state x0, a solution is given by

(f0(x0), f(x0), f1(x0), f2(x0), . . .).

The sequence (id, f, f2, . . .) itself may sometimes be referred to as the dynamical system.

(ii) For m,n ∈ Z, we have

fn+m(x) = fn(fm(x)) = fm(fn(x)).

Hence if x0 ∈ X and we set xn := fn(x0) for all n ∈ N, then for all n,m ∈ N0 we have

fm(xn) = xm+n = fn(xm).

This is sometimes referred to as the semigroup property1.

2.1 Discrete autonomous dynamical systems

Throughout this section, we let X ⊆ Rd, f : X → X, and the discrete dynamical system defined
by xn+1 = f(xn) is autonomous.

Definition 2.4. Let x ∈ X.

(i) The sequence
O+(x) :=

(
x, f(x), f2(x), . . .

)
is called the forward orbit (or just the orbit) of x.

(ii) Assuming f is bijective, the sequence

O−(x) :=
(
x, f−1(x), f−2(x), . . .

)
is called the backward orbit of x.

(iii) Assuming f is bijective, the full orbit of x is the (two-way) sequence

O(x) := (fn(x))∞n=−∞ .

Example 2.5.

(i) Consider again the system given by the function f(x) = ax, for all x ∈ R. For a 6= 0, f is
bijective, with inverse f−1(x) = x

a . The three orbits are

O+(x) =
(
x, ax, a2x, . . .

)
=
(
anx

)∞
n=0

,

O−(x) =
(
x,
x

a
,
x

a2
, . . .

)
,

O(x) =
(
anx

)∞
n=−∞.

(ii) Not all functions have a backward orbit on X or even at all. For example, the function
f(x) = ax(1− x). In this case, f is not invertible, as f(0) = f(1) = 0.

Definition 2.6. A point x ∈ X is called a fixed point of the dynamical system xn+1 = f(xn)
if x = f(x). A point x ∈ X is called a periodic point of period m if fm(x) = x. The smallest
integer p > 0 such that fp(x) = x is called the minimum period (also called minimal period,
least period, and prime period) of x.

1This is because the solutions form a semigroup.

https://en.wikipedia.org/wiki/Semigroup
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Note that a fixed point is exactly a periodic point of period 1. And more generally, a point
x is periodic of period m if and only if x is a fixed point of the function fm.

Lemma 2.7. If x ∈ X is a periodic point of period m, then x is a periodic point of period mn,
for all n ∈ N. Conversely, if x is periodic with minimal period p and fm(x) = x for some m > 0,
then p | m.

Proof. Let x ∈ X be periodic of period m. We prove the first statement by induction. The base
case, n = 1, simply says that fm(x) = x, which follows from the definition. Now suppose that
for some n ∈ N, fmn(x) = x. Then x is a fixed point of fm(n+1) as

fm(n+1)(x) = fmn+m(x) = fmn(fm(x)) = fmn(x) = x.

Conversely, we suppose that x has minimum period p. By the division algorithm, there exist
integers q, r ≥ 0 with r < p such that m = pq + r. Thus,

x = fm(x) = fpq+r(x) = f r(fpq(x)) = f r(x).

Since r < p and p is minimal, we must have r = 0. That is, m = pq, and so p | m.

If a point x is periodic, then all points appearing in the orbit must also be periodic, with the
same period (but not necessarily the same minimum period). This is what the next proposition
proves.

Proposition 2.8. If x ∈ X is a periodic point of period m, then for all q ∈ N, f q(x) is a
periodic point of period m.

Proof. Let m ∈ N0, x ∈ X such that fm(x) = x. Then for q ∈ N,

fm(f q(x)) = fm+q(x) = f q+m(x) = f q(fm(x)) = f q(x).

Since all points in the orbit of x are periodic when x is periodic by Proposition 2.8, this
makes the notion of periodic orbits well-defined.

Definition 2.9. A point x ∈ X is called eventually periodic of period p if x is not periodic
and there exists an m > 0 such that fm(x) is periodic of period p.

Sometimes it is useful to define eventually periodicity to include (actual) periodicity—that
is, to allow m = 0 in the definition. We choose however to distinguish the two concepts, so to
avoid confusion. For an eventually periodic point x0, the forward orbit looks like

O+(x0) = (x0, x1, . . . , xm−1, xm, xm+1, . . . , xm+p−1︸ ︷︷ ︸, xm, xm+1, . . . xm+p−1︸ ︷︷ ︸, . . .).
We may also refer to an eventually periodic point as having an eventually periodic orbit
since periodic orbits are well-defined.

Example 2.10. Consider the function f(x) = ax(1− x). The point x = 1 has forward orbit

O+(1) =
(
1, 0, 0, . . .

)
,

which is eventually periodic of period 1. In other words, it is eventually fixed. �

Theorem 2.11. Let f : X → X where X is a finite set. Then for any x ∈ X, the orbit under
f is either periodic or eventually periodic.

Proof. Let |X| = n and consider the first n+ 1 elements in the orbit of some x ∈ X,

x, f(x), f2(x), . . . , fn(x).

By the pigeonhole principle, we must have f i(x) = f j(x) for some integers 0 ≤ i < j ≤ n. Thus
f i(x) is a periodic point of period p = j− i, and by Proposition 2.8, so is fk(x) for all k ≥ i.
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Similarly, if the state space is countable, then there are not many options for orbits. (Recall
the cardinality of X is countable if there exists a bijection of sets N→ X.)

Theorem 2.12. Let f : N→ N. Then for x ∈ N, exactly one of the following is true.

1. The orbit of x is periodic or eventually periodic.

2. The orbit of x diverges2.

Proof. Assume that O+(x) does not diverge, so we want to show that the orbit is either periodic
or eventually periodic. Then there is an r ∈ N such that for all n ≥ 0, fn(x) < r. Therefore,
there are more than r values fn(x) within the interval [0, r]. Then, by the pigeonhole principle,
there are distinct m,n ∈ N such that fm(x) = fn(x) < r. Assuming m < n, all elements fn(x)
for n ≥ m must be periodic, so the orbit O+(x) is either periodic or eventually periodic.

Theorem 2.13. Let f : Z→ Z. Then for x ∈ Z, exactly one of the following is true.

1. The orbit of x is periodic or eventually periodic.

2. The orbit of x diverges.

Proof. Exercise. (The argument is essentially the same as above, but using |fn(x)| instead of
fn(x).

Remark 2.14. It is not always easy to decide which of the two cases in Theorems 2.12 or 2.13
an orbit falls into. A classical example of this is the so-called “3n + 1 problem,” in which a
dynamical system is specified by the function f : N→ N where

f(x) =

{
3x+ 1 if x is odd,
x/2 if x is even.

For fairly small initial values (like integers ≤ 1018), the orbits can be found by computer calcu-
lations and are periodic or eventually periodic. But to this day, it is not known whether or not
this is true for all initial values. It is a famous open conjecture, known as the Collatz conjecture,
that asks if all positive integers converge to 1.

One of the challenging aspects of the Collatz conjecture and deciding whether or not an
orbit will converge are related to a famous problem in mathematics and computer science: the
Halting Problem. The problem asks, given an arbitrary computer program and input, decide if
it will halt and return an answer. Turing, in 1936, proved that there cannot exist an algorithm
that can successfully decide whether or not every possible program and input pair halts or not.

For x ∈ R, we write ‖x‖ = |x| the standard absolute value3.

Definition 2.15. A function f : X → X is said to be a contraction if there exists a constant
K ∈ [0, 1) such that for all x, y ∈ X,

‖f(x)− f(y)‖ ≤ K ‖x− y‖ .

We prove a quick lemma to show that all functions that are contraction are continuous
functions.

Lemma 2.16. If a function f : X → X is a contraction, then f continuous.

2A sequence diverges if it does not converge to any real number.
3This is one of many norms we could use.

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Halting_problem
https://en.wikipedia.org/wiki/Alan_Turing
https://en.wikipedia.org/wiki/Norm_(mathematics)
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Proof. If the contraction constant K = 0, then this is clear as f is constant. Otherwise, let
x0 ∈ X. For all ε > 0, set δ = ε/K. Then for all x ∈ D such that ‖x− x0‖ < δ, we have

‖f(x)− f(x0)‖ ≤ K ‖x− x0‖ < Kδ = ε.

Therefore, f is continuous at x0, and so f is continuous on X.

Theorem 2.17 (Banach’s fixed-point theorem). If f : X → X is a contraction with X ⊆ Rd
closed, then f has a unique fixed point x ∈ X and the orbit of every x ∈ R converges to x.

Proof. First we prove that an arbitrary point in X converges to some point in X. Let x0 ∈ X,
and for every n ∈ N define xn = fn(x0). For each n ∈ N,

xn =
n−1∑
i=0

(xi+1 − xi) + x0,

so that the sequence (xn)∞n=0 converges if and only if the series
∑∞

i=0(xi+1−xi) converges. Since
f is a contraction, there exists K ∈ [0, 1) such that

‖xi+1 − xi‖ = ‖f(xi)− f(xi−1)‖ ≤ K ‖xi − xi−1‖ . (2.2)

By iterating (2.2), ‖xi+1 − xi‖ ≤ Ki ‖x1 − x0‖. Therefore,∥∥∥∥∥
∞∑
i=0

(xi+1 − xi)

∥∥∥∥∥ ≤
∞∑
i=0

‖xi+1 − xi‖ (triangle inequality)

≤
∞∑
i=0

Ki ‖x1 − x0‖ (contraction)

= ‖x1 − x0‖
∞∑
i=0

Ki (constant)

<∞. (geometric series)

Because the series converges, the sequence also converges to a point x̄ := limn→∞ xn. Since X
is closed and since Rd is complete, it follows that x̄ ∈ X.

Now we want to prove that x̄ is unique. Since f is a contraction, by Lemma 2.16, f is
continuous. Thus,

x̄ = lim
n→∞

xn = lim
n→∞

f(xn−1) = f( lim
n→∞

xn−1) = f(x̄).

This proves that x̄ is a fixed point of f . Suppose there is another fixed point of f , call it ȳ. We
will show ȳ = x̄, which will prove uniqueness. Since ȳ is a fixed point,

‖x̄− ȳ‖ = ‖f(x̄)− f(ȳ)‖ ≤ K ‖x̄− ȳ‖ . (2.3)

However, since K ∈ [0, 1), (2.3) is only possible when ‖x̄− ȳ‖ = 0. This implies that ȳ = x̄.

From Banach’s fixed-point theorem, we see not only that a contraction map must have a
fixed point on a closed set X, but that the orbit of every point in the space converges to the
fixed point. In the proof, we have also shown the following converse statement, which is true for
all continuous functions, not just contractions.

Corollary 2.18. Let f : X → X be continuous. If the orbit of x ∈ X converges to some y ∈ X,
then y is a fixed point of f .

https://en.wikipedia.org/wiki/Triangle_inequality
https://en.wikipedia.org/wiki/Geometric_series
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2.2 Fixed points

We now consider some properties of fixed points in more detail, some of which we alluded to in
the previous section.

Definition 2.19. Let f : X → X.

1. The point x is a stable fixed point if for all ε > 0, there exists δ > 0 such that for y ∈ X,
‖x− y‖ < δ implies that for all n ≥ 0,

‖fn(y)− x‖ < ε.

2. The point x is an attracting fixed point (or sink) if there exists δ > 0 such that for
y ∈ X, ‖x− y‖ < δ implies that

lim
n→∞

fn(y) = x.

3. The point x is an unstable fixed point if x is not stable.

4. The point x is a repelling fixed point (or source) if there exists δ > 0 such that for
y ∈ X with 0 < ‖x− y‖ < δ there exits an m ≥ 0 such that

‖x− fm(y)‖ > δ.

Qualitatively, if x is a stable fixed point, we can make a system stay arbitrarily close to x
“forever” by choosing the initial state close enough to x. If x is an attracting fixed point, then
we can make a system converge to the state x by choosing an initial state close enough to x. If
f is continuous and X ⊆ R, then all attracting fixed points are stable (see Proposition 2.24).
A fixed point is repelling if we can find some ball around x such that for all points in the ball,
their orbit at some point leaves the ball. Thus all repelling fixed points are unstable.

We first go through a number of examples to demonstrate the subtleties.

Example 2.20. Consider again the discrete system of Example 1.3, defined by xn+1 = a · xn =
f(xn) for some a > 0. Therefore, f(x) = ax, and note that we always have at least one fixed
point: x = 0. We now use the function f to reexamine the qualitative behavior of this system.4

x

y

(a) Case 1: a > 1.

x

y

(b) Case 2: a < 1.

x

y

(c) Case 3: a = 1.

Figure 2.1: The above pictures show the function f in red, which we use to examine the path
of the system over time, and the identity function id in blue.

Case 1: a > 1. As f(x) > x for x > 0 and f(x) < x for x < 0, the sequence (xn) is increasing
(away from zero) if x0 > 0 and decreasing (away from zero) if x0 < 0. In other words, for
every initial state other than zero, the system diverges away from zero, and thus x = 0 is
a repelling fixed point.

4Note that a graph of the path system xn = anx0 as a function of n, looks very different from this.
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Case 2: a < 1. Here, the opposite is true: f(x) < x for x > 0 and f(x) > x for x < 0. So (xn)
is decreasing (towards zero) if x0 > 0 and increasing (towards zero) if x0 < 0. Thus for
every initial state other than zero, the system converges back to zero, and thus x = 0 is
an attracting fixed point.

Case 3: a = 1. We have f(x) = x for all x ∈ Rd. Therefore every point is a fixed point.
Each fixed point x is stable, but neither attracting nor repelling: given an initial state, y,
arbitrarily close to x, the system will stay in state y “forever,” and thus not get further
away from or closer to x. Formally, for x, y ∈ Rd and n ∈ N we have

‖x− fn(y)‖ = ‖x− y‖ ,

so for ε > 0, ‖x− fn(y)‖ < ε whenever ‖x− y‖ < ε =: δ. �

The above one-dimensional system is defined by a differentiable function and the analysis
gives us a hint as to how to classify fixed points using derivatives. We will look more closely at
this in the next chapter.

Example 2.21. Consider the function g in Figure 2.2.

g(x) =

{
2x if x ≥ 0,
1
2x if x < 0.

x

y

Figure 2.2: The function g, plotted in red, and the identity function, plotted in blue.

Then g has one fixed point at x = 0, and for all x 6= 0, g(x) > x, which means that the orbit
of x is increasing. However, for x0 < 0, we have 0 > xn+1 > xn, which is increasing towards
zero. For x0 > 0, we have 0 < xn < xn+1, which is increasing away from zero. Thus, the fixed
point x = 0 is not stable, attracting, or repelling, so it is just unstable. �

Example 2.22. Consider the two functions f and g in Figure 2.3

x

y

f(x) =

{
−3x if x < 0,
−1

2x if x ≥ 0.

x

y

g(x) =

{
−2x if x < 0
−1

3x if x ≥ 0 .

Figure 2.3: The functions f and g are plotted in red together with the identity and its negative
are plotted in blue.

It is clear that both f and g have the fixed point at x = 0, and f(x) > −x, g(x) > −x for all
x 6= 0. This has not told us much to distinguish f and g, so instead we look at a few iterations.
Fix x0 < 0, so the first few iterations are

x1 = f(x0) = −3x0, x2 = −1

2
x1 =

3

2
x0, x3 = −9

2
x0, x4 =

9

4
x0.
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Therefore,

x2n =

(
3

2

)n
x0, x2n+1 = −3

(
3

2

)n
x0.

Similarly, if x0 > 0,

x2n =

(
3

2

)n
x0, x2n+1 = −1

2

(
3

2

)n
x0.

Thus, the point x = 0 is a repelling fixed point of f .
In the same way, we find that for a point x0 < 0 under g

x2n =

(
2

3

)n
x0, x2n+1 = −2

(
2

3

)n
x0.

For x > 0,

x2n =

(
2

3

)n
x0, x2n+1 = −1

3

(
2

3

)n
x0.

We see that the point x = 0 is an attracting fixed point of g.
As g : R → R is continuous, this implies that the fixed point is stable. To see this directly,

let ε > 0. We need to find a δ > 0 such that ‖y‖ < δ implies that for all n ≥ 0, ‖gn(y)‖ < ε. To
this end, set δ = ε/2, so that whenever ‖y‖ < δ, then

‖gn(y)‖ ≤
{

(2/3)m ‖y‖ if n = 2m,
2 · (2/3)m ‖y‖ if n = 2m+ 1.

Therefore, ‖gn(y)‖ ≤ 2 ‖y‖ < 2δ = ε. �

We’ve seen that a fixed point can be neither repelling nor attracting. It is also possible for
a fixed point to be both repelling and attracting, which is demonstrated in Example 2.23.

Example 2.23. Consider the function f : R→ R given by

f(x) =

{
0 if x = 0 or x = 2,
2 otherwise.

x

y

x−1 0 1 2

The function f has one fixed point at x = 0. To see that it is attracting, observe that for any
x ∈ R we have f2(x) = 0, so the orbit of every point in R is eventually fixed and thus converges
to 0. To see that it is also repelling, take δ = 1. Then for every y 6= 0 with ‖y − 0‖ < 1 that
‖f(y)− 0‖ = 2 > 1. This also shows that the fixed point x = 0 is not stable. �

If f is a continuous function (on R), then such a situation in Example 2.23 cannot occur,
which the next proposition proves.

Proposition 2.24. If f : R→ R is a continuous function with an attracting fixed point x̄, then
x̄ is a stable fixed point of the system xn+1 = f(xn).
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Proof. From the definition of an attractor, there exists a maximal interval I := (a, b) containing
x̄ such that for all x ∈ I,

lim
n→∞

fn(x) = x̄.

We allow for the possibility that a = −∞ or b = ∞. By construction, I cannot contain any
other fixed points, and additionally, for all x ∈ I \ {x̄}, exactly one of the inequalities holds:

f(x) < x f(x) > x.

Let I` := (a, x̄) and Ir := (x̄, b) be the left and right sides of I, respectively. Our goal is to prove
the following claim.

Claim 1. For all x ∈ I`, the orbit of x is monotonically increasing, and for all x ∈ Ir, the orbit
of x is monotonically decreasing.

Proof of Claim 1. Define a new function g : R→ R by g(x) := f(x)− x. Since f is continuous,
so is g. Note that f cannot have a periodic point contained in I \ {x̄}; otherwise such a point
would not converge to x̄. Therefore, g has exactly one root in the interval I, namely x̄, so g has
the same sign on Ir and on I` (can be different signs).

Suppose now that g > 0 on Ir. That is, for all x ∈ Ir, f(x) > x. Now we iterate this fact:
for all x ∈ Ir and n ≥ 1,

fn+1(x) = f(fn(x)) > fn(x) > x.

Thus, the sequence (fn(x))∞n=0 is a monotonically increasing sequence in Ir. Since g > 0 on Ir,
it follows that for all x ∈ Ir, x > x̄. Therefore the sequence (fn(x))∞n=0 cannot converge to x̄—a
contradiction. Hence, we must have that g < 0 on Ir. A similar argument shows that g > 0 for
all x ∈ I`. Therefore, we have proved Claim 1.

Now we are ready to show that x̄ is a stable fixed point. Let ε > 0. Since f is continuous,
there exists δ > 0 such that ‖x− x̄‖ < δ implies ‖f(x)− x̄‖ < ε. In particular, we may choose
δ such that δ ≤ ε. Fix this choice of δ, and let x ∈ I \ {x̄} such that ‖x− x̄‖ < δ. Then either
x ∈ I` or x ∈ Ir; the argument will work the similarly either way, so we choose that x ∈ Ir.
Therefore, ‖x− x̄‖ = x − x̄ > 0. From Claim 1, it follows that x > f(x) > f2(x) > · · · > x̄.
Thus, for all n ≥ 0,

‖fn(x)− x̄‖ = fn(x)− x̄ (fn(x) ∈ Ir)
< x− x̄ (Claim 1)

= ‖x− x̄‖ (x ∈ Ir)
< δ ≤ ε. (definition)

Therefore, x̄ is a stable fixed point.

In the next example, we will use polar coordinates. Recall that polar coordinates are related
to the usual Cartesian coordinates by x = r cos(t) and y = r sin(t). We will use r ≥ 0 and
t ∈ [0, 2π) in this way for the next example. The benefit of polar coordinates is that, for some
functions, polar coordinates are easier to work with.

Example 2.25. Let f : R2 → R2 be defined, in polar coordinates, by

f(r, t) := (
√
r,
√

2πt).

The function f is continuous and has fixed points at the origin (0, 0) and (1, 0). For an initial
point (r0, t0), we have

r1 = r
1/2
0 , r2 =

(
r

1/2
0

)1/2
= r

1/4
0 , rn = r

1/2n

0

https://en.wikipedia.org/wiki/Polar_coordinate_system
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and

t1 = (2πt)1/2, t2 =
(

2π(2πt)1/2
)1/2

= (2π)3/4t1/4, tn = (2π)(2n−1)/2nt1/2
n
.

Thus as n → ∞, both rn → 1 and tn → 2π, and we see that the orbit of every (r, t) converges
to (1, 0). Hence the fixed point (1, 0) is attracting.

However, (1, 0) is also unstable. If we take any point in the first quadrant of the plane—so
r > 0 and 0 < t < π/2—the orbit of the point takes an anticlockwise path around the origin
before approaching (1, 0) from the fourth quadrant. We can see this by examining the behavior
of the t-function f1 : R → R via f1(t) =

√
2πt on the interval (0, 2π). For all x ∈ (0, 2π), f1 is

increasing, with f1(x) > x and 0 < f1(x) < 2π. �

x

y

2π

(a) The function f1 is plotted in red and the identity is plotted in blue.

-1.0 -0.5 0.5 1.0
x = r cost

-1.0

-0.5

0.5

1.0

y = r sint

(b) The trajectories of the the points: (1.1, 0.01), (1.01, 0.02), (0.75, 0.03), (0.5, 0.22), and
(0.45, π/5).

Figure 2.5: Plots concerning the system in Example 2.25.

2.3 Periodic orbits

Definition 2.26. Let x be a fixed point of a function f : X → X. A point y ∈ X is called
forward asymptotic to x if

lim
k→∞

fk(y) = x.
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The set of all points forward asymptotic to x is called the stable set of x and is denoted by
ωs(x).

Observe that if x is an attracting fixed point then the set ωs(x) contains a ball of radius δ
around x.

Definition 2.27. A periodic orbit O+(x) of period p is a stable orbit if each of its points

x, f(x), f2(x), . . . , fp−1(x)

is a stable fixed point of fp. A periodic orbit is called unstable if it is not stable.

Proposition 2.28. Let f : X → X be continuous. Then a periodic orbit O+(x) of period p is
stable if and only if x is a stable fixed point of fp.

Proof. Let x ∈ X such that the orbit O+(x) is a stable orbit of period p. By definition, x is a
stable fixed point of fp, which proves the forward direction.

Conversely, assume that x ∈ X is a stable fixed point of fp. We need to show that f i(x) is
a stable fixed point of fp for all 0 ≤ i ≤ p− 1. Then let 0 ≤ i ≤ p− 1. Since f is continuous, so
is f i. Therefore, for every ε > 0 there is a δ1 > 0 such that ‖x− y‖ < δ1 implies∥∥f i(x)− f i(y)

∥∥ < ε.

Since x is a stable fixed point of fp, there exists δ2 > 0 such that ‖x− y‖ < δ2 implies that for
all k ∈ N, ∥∥∥x− fkp(y)

∥∥∥ < δ2.

By the continuity of fp−i, there exists a δ3 > 0 such that ‖u− z‖ < δ3 implies that∥∥fp−i(u)− fp−i(z)
∥∥ < δ2.

Now set u = f i(x). Recall that fp(x) = x, so for all k ∈ N,∥∥f i(x)− z
∥∥ < δ3 =⇒

∥∥fp(x)− fp−i(z)
∥∥ < δ2

(
continuity of fp−i

)
=⇒

∥∥∥x− fkp+p−i(z)∥∥∥ < δ1 (fixed point of fp)

=⇒
∥∥∥f i(x)− fkp+p(z)

∥∥∥ < ε
(
continuity of f i

)
=⇒

∥∥∥f i(x)− f (k+1)p(z)
∥∥∥ < ε.

Therefore, f i(x) is a stable fixed point of fp for all 0 ≤ i ≤ p− 1.

Definition 2.29. A periodic orbit O+(x) of period p is called an attractor (or sink) if for
each i ∈ {0, 1, . . . , p− 1}, the point f i(x) is an attracting fixed point of fp. Similarly, O+(x) is
called a repeller (or source) if each f i(x) is a repelling fixed point of fp.

Proposition 2.30. Let f : X → X be continuous and x ∈ X. Then

(i) O+(x) is an attractor if and only if x = fp(x) is an attracting fixed point of fp;

(ii) O+(x) is a repeller if and only if x = fp(x) is a repelling fixed point of fp.

Proof. Exercise.

Remark 2.31. Similar to the fixed point case in Definition 2.26, a point y is called forward
asymptotic to a periodic point x of period p if

lim
k→∞

fpk(y) = x.
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Example 2.32. For a fixed b ∈ R, let f : R → R be defined by f(x) := b − x. If x is a fixed
point of f , then x = b − x, or x = b/2. Therefore, f has exactly one fixed point. However,
observe that

f2(x) = f(b− x) = b− (b− x) = x.

Therefore, every x ∈ R is periodic of period at most 2. None of the orbits are attracting, but
they are all stable. The graph is plotted in Figure 2.6. �

x

y

Figure 2.6: The function f is plotted in red together with the identity function in blue.



Chapter 3

One dimensional systems

In this chapter, we look at dynamical systems defined by functions f : I → I, where I ⊆ R is
an interval. An advantage of studying one dimensional systems is that we can draw graphs.

Definition 3.1. A phase portrait of a dynamical system is a graphical representation of the
possible paths of the system.

We use mainly use two techniques to visualize trajectories, and examples of them are given
in the next figure. But be aware that graphs can be misleading!

x

f(x) = 2x

x

f(x) = 1
2x

x

f(x) = −x

(a) Different phase portraits.

x

y

a−1
a

x0x1x3 x̂0

(b) A plot of a function.

Figure 3.1

Example 3.2. We look at the recursion defined by f : R→ R,

f(x) = ax+ b.

That is, xn+1 = axn + b. We have a number of different cases to consider based on the value of
a. A plot can be seen in Figure 3.2.

Case 1: a = 1. So xn+1 = xn + b, and the solution is xn = nb + x0. Now we consider the
possible fixed points based on the value of b.

� If b = 0, then all points are fixed points.

� If b > 0, then there are no fixed points and xn →∞ as n→∞.

� If b < 0, then there are no fixed points and xn → −∞ as n→∞.

25
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x

y

Figure 3.2: The plot of f when a = 1 and b > 0. Iterations are drawn in black and are seen to
diverge to infinity.

Case 2: a 6= 1. In this case, f has exactly one fixed. The local behavior around the fixed point
is similar to the exponential map, xn+1 = axn, which we will see shortly. The fixed point
satisfies x = ax+ b; therefore,

x =
b

1− a
is the fixed point of f . We solve for the general solution to the recurrence:

x1 = ax0 + b

x2 = a(ax0 + b) + b = a2x0 + ab+ b

x3 = a(a2x0 + ab+ b) + b = a3x0 + a2b+ ab+ b.

We can see the general pattern emerging:

xn = anx0 + b

(
n−1∑
k=0

ak

)

= anx0 + b
(1− an)

(1− a)

= an
(
x0 −

b

1− a

)
+

b

1− a
.

(3.1)

Now we consider different values for a.

� If a = −1, then x = b
1−a is a stable but not an attracting fixed point. All other points

are periodic with minimal period 2 (see Example 2.32).

� If |a| > 1, then (an) diverges, so (xn) diverges for x0 6= b
1−a . Thus x = b

1−a is an
unstable and repelling fixed point.

� If |a| < 1 then limn→∞ a
n = 0. Therefore, x = b

1−a is a stable and attracting fixed
point.

We want to further analyze the case when |a| < 1 as the sign of a changes the behavior of
the system. However, we will only examine their phase diagrams in Figure 3.3. �

Remark 3.3. The linear difference equation we considered in Example 3.2 is essentially the
only case where it is possible to write down an explicit expression for fn, i.e. the solution (3.1).
For a second degree polynomial, fn is a polynomial of degree 2n, which quickly grows out of
hand.
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x

y

(a) 1 < a.

x

y

(b) 0 < a < 1.

x

y

(c) −1 < a < 0.

Figure 3.3: Three phase diagrams for Example 3.2 with different values of a. The function f is
plotted in red; the identity function is plotted in blue; and the iterations are plotted in black.

Definition 3.4. Let f : I → I be a continuously differentiable function. A periodic point x
of minimal period p is called hyperbolic if |(fp)′(x)| 6= 1. In particular, a fixed point x of a
function f is hyperbolic if |f ′(x)| 6= 1.

Recall the open ball of radius r ≥ 0 about a point x ∈ R is

Br(x) = {y ∈ R | |x− y| < r} .

Theorem 3.5. Let f : I → I be continuously differentiable, and suppose x ∈ I is a fixed point
of f .

(i) If |f ′(x)| < 1, then x is attracting and is thus a stable fixed point.

(ii) If |f ′(x)| > 1, then x is repelling and is thus an unstable fixed point.

Proof. For (i), choose λ such that |f ′(x)| < λ < 1. As f ′ is continuous, there exists δ > 0 such
that for all y ∈ Bδ(x), |f ′(y)| < λ. Fix y ∈ Bδ(x) with y 6= x. By the Mean Value Theorem,
there exists c in between y and x such that

λ >
∣∣f ′(c)∣∣ =

|f(x)− f(y)|
|x− y|

.

Therefore,

|x− f(y)| = |f(x)− f(y)| < λ |x− y| < |x− y| .

This implies that f(y) ∈ Bδ(x), and so by the Mean Value Theorem, there exists c1 between
f(y) and x such that

λ >
∣∣f ′(c1)

∣∣ =
|f(x)− f(f(y))|
|x− f(y)|

.

Therefore, ∣∣x− f2(y)
∣∣ < λ |x− f(y)| < λ2 |x− y| < |x− y| .

By induction, it follows that for all n ∈ N,

|x− fn(y)| < λn |x− y| .

Therefore fn(y) → x. Since this holds for all y ∈ Bδ(x), the fixed point x is attracting. By
Proposition 2.24, x is also stable.

https://en.wikipedia.org/wiki/Mean_value_theorem
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The proof for (ii) is similar to (i). Choose λ such that |f ′(x)| > λ > 1, and since f ′ is
continuous, there exists δ > 0 such that for all y ∈ Bδ(x), |f ′(y)| > λ. Again, let y ∈ Bδ(x) with
y 6= x. Like above, by the Mean Value Theorem there is a c in between y and x such that

λ <
∣∣f ′(c)∣∣ =

|f(x)− f(y)|
|x− y|

and this time we have

|x− f(y)| = |f(x)− f(y)| > λ |x− y| > |x− y| .

If λ |x− y| ≥ δ, then we are done. Otherwise f(y) ∈ Bδ(x), and there exists c1 in between x
and f(y) such that

λ <
∣∣f ′(c1)

∣∣ =

∣∣f(x)− f2(y)
∣∣

|x− f(y)|
.

Thus, ∣∣x− f2(y)
∣∣ =

∣∣f(x)− f2(y)
∣∣ > λ |x− f(y)| > λ2 |x− y| .

We repeat this process as long as necessary; that is, until we find an m such that λm ≥ δ/|x−y|,
and then

|x− fm(y)| > λm |x− y| ≥ δ.

So that fm(y) 6∈ Bδ(x). Since λ > 1, such an m exists. As y ∈ Bδ(x) was arbitrary, we see that
x is a repelling and thus an unstable fixed point.

An immediate consequence of Theorem 3.5 is that hyperbolic fixed points of a continuously
differentiable system f : R → R are either attracting (and stable) or repelling (and unstable).
The only possible uncertainty occurs when the derivative is exactly 1.

Example 3.6. Consider the logistic map fa(x) = ax(1 − x) for 1 < a < 2. We have seen that
the fixed points are x = 0 and x = (a− 1)/a. The derivative is f ′a(x) = a− 2ax, so∣∣f ′a(0)

∣∣ = a > 1
∣∣f ′a(a− 1)/a)

∣∣ = |a− 2(a− 1)| = |2− a| < 1.

Thus by Theorem 3.5, x = 0 is a repelling fixed point, and x = (a− 1)/a is attracting.

Example 3.7. What happens if |f ′(x)| = 1? In this case, there is no general answer. Consider
the following functions, all with fixed point x = 0 and |f ′(0)| = 1:

f1(x) = x+ x3, f2(x) = x− x3, f3(x) = x+ x2.

Their graphs are given in Figure 3.4.

x

y

(a) f1

x

y

(b) f2

x

y

(c) f3

Figure 3.4: The fixed point x = 0 is (a) a repeller, (b) an attractor, and (c) an unstable point
that is neither repeller or attractor.

Proposition 3.8. Let f : R→ R be a continuous function with a fixed point at x = 0.
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(i) If there exists r > 0 such that for all x ∈ Br(0) \ {0}, |f(x)| < |x|, then x = 0 is an
attracting fixed point.

(ii) If there exists r > 0 such that for all x ∈ Br(0)\{0}, |f(x)| > |x|, then x = 0 is a repelling
fixed point.

Proof. First we fix some notation for the proof. For some x0 ∈ R and for all n ∈ N, let
xn = f(xn−1).

For (i), suppose that for all x ∈ Br(0) \ {0}, |f(x)| < |x|. Then x ∈ Br(0) implies that
|f(x)| ≤ |x| < r, so f(x) ∈ Br(0). Because |f(x)| < |x| for all x ∈ Br(0) \ {0}, it follows
that f has no other fixed points contained in Br(0), so |f(x)| = |x| if and only if x = 0. Let
x0 ∈ Br(0) \ {0}. For all n ∈ N,

0 ≤ |xn| ≤ |xn−1| < r, (3.2)

so that the sequence (|xn|) is monotonically decreasing and bounded from below. Thus, the
sequence converges. Let

x̄ = lim
n→∞

|xn| .

If there exists some k ∈ N such that xk = 0, then x̄ = 0, and we are done. Otherwise, we
assume that for all k ∈ N, |xk| > 0. Then there exists a subsequence (xnk

) of (xn) such that all
the xnk

have the same sign. Then from (xnk
), choose a another subsequence (xnkj

) such that

all the f(xnkj
) have the same sign. Then

lim
n→∞

xnkj
= x̄.

For all j, |xnkj
| > |f(xnkj

)| = |xnkj
+1|. When we take the limit,

|x̄| ≥ lim
j→∞

∣∣∣f(xnkj
)
∣∣∣ = |x̄| .

Thus, |x̄| = limj→∞ |f(xnkj
)|. Since f is continuous, |x̄| = |f(x̄)|. Because x̄ ∈ Br(0), it follows

that x̄ = 0.
For (ii), suppose for all x ∈ Br(0) \ {0}, |f(x)| > |x|, and let x0 ∈ Br(0) \ {0}. Again as

before, f cannot have a fixed point in Br(0) \ {0}. Then |x1| > |x0|, and if |x1| ≥ r then we are
done. Otherwise, |x2| > |x1| and so on. Either |xn| < r for all n, or for some k, |xk| ≥ r. In
the latter case, we are done. In the former case, (|xn|) is a monotonically increasing sequence
with 0 < |xn| < |xn+1| < r for all n. Therefore, limn→∞ |xn| := x̄ exists. As above, by choosing
subsequences we see that we must have x̄ = f(x̄). As x̄ > 0, the only remaining possibility is
that x̄ = r. Then choosing δ = r/2, we see that 0 is a repelling fixed point.

The attracting fixed point, x = 0, in Proposition 3.8 is a stable fixed point by Proposition 2.24
since we assumed the function to be one-dimensional and continuous.

Example 3.9. We can not remove the continuity condition in Proposition 3.8. To see this,
consider first the function f : [0, 1)→ [0, 1) defined by

f(x) =

{
1
2x+ 1

2k+1 for 1/2k < x ≤ 1/2k−1,

0 for x = 0.

By definition, x = 0 is a fixed point. Moreover, f(x) < x for all x ∈ (0, 1), so the forward orbit
O+(x) of any point x is a decreasing sequence. But for any x ∈ (0, 1), we can find a k such that
1/2k < x ≤ 1/2k−1, and for any such x and k we have

lim
n→∞

fn(x) =
1

2k
6= 0.

Thus, the fixed point x = 0 is not attracting. It is, however, stable. (Can you prove this?) The
plot of this can be seen in Figure 3.5. �
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Figure 3.5: The plot of Example 3.9.

Example 3.10. Now let us consider the similar function to the one in Example 3.9:

g(x) =

{
1
2x+ 1

2k
for 1/2k ≤ x < 1/2k−1,

0 for x = 0.

By definition, x = 0 is a fixed point. Moreover, g(x) > x for all x ∈ (0, 1), so the forward orbit
O+(x) of any such point x is an increasing sequence. For every r > 0, there exists x ∈ (0, 1) and
k ≥ 1 such that 1/2k < x ≤ 1/2k−1 < r. Then

lim
n→∞

gn(x) =
1

2k−1
< r,

Hence, the orbit never leaves the ball of radius of r, so that the fixed point x = 0 is not repelling.
The plot of this function is given in Figure 3.6. �
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Figure 3.6: The plot of Example 3.10.

3.1 Periodic points and Sharkovsky’s Theorem

In Example 2.32, the dynamical system defined by a function of the form f : R→ R, f(x) = b−x
has one fixed point at x = b

2 . By calculating f2(x), we saw that the orbits of all other points
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are periodic of period 2. In general however, attempting to find periodic orbits by calculating
fn is not so simple.

Example 3.11. Let f(x) = x2 − 1. Then f has two fixed points: such a fixed point satisfies
x2 − x− 1 = 0, so

x =
1±
√

5

2
.

Does the function f have some periodic points (with period p > 1)? First, we compute a formula
for f2:

f2(x) = (x2 − 1)2 − 1 = x4 − 2x2.

The periodic points of period two are the fixed points of f2, and such points must satisfy
x = x4 − 2x2 or, equivalently,

x(x3 − 2x− 1) = 0. (3.3)

All fixed points are also periodic of period two, so they must also satisfy the above quartic
equation (3.3). Since x = 0 is not a fixed point, we must have that x2 − x− 1 divides the cubic
factor in (3.3). Therefore,

0 = x(x3 − 2x− 1) = x(x+ 1)
(

2x− 1 +
√

5
)(

2x− 1−
√

5
)
.

Thus, the two periodic points of minimum period 2 are x = 0 and x = −1.

We could try to replicate this process used in Example 3.11 for f3 and so on for higher n,
but it would quickly become impractical. Thankfully, we have some other tools at our disposal.

The next theorem is due to Sharkovsky who proved it in 1964. In order to state the next
theorem, we need to define a total order on N. Define Sharkovsky’s order ≺ with the following
ascending sequence:

3 ≺ 5 ≺ 7 ≺ 9 ≺ · · ·
· · · ≺ 2 · 3 ≺ 2 · 5 ≺ 2 · 7 ≺ 2 · 9 ≺ · · ·
· · · ≺ 22 · 3 ≺ 22 · 5 ≺ 22 · 7 ≺ 22 · 9 ≺ · · ·

...
...

...
...

· · · ≺ 2n · 3 ≺ 2n · 5 ≺ 2n · 7 ≺ 2n · 9 ≺ · · ·
...

...
...

...
· · · ≺ 24 ≺ 23 ≺ 22 ≺ 2 ≺ 1.

So that 3 is the smallest integer and 1 the largest integer relative to Sharkovsky’s order ≺. And
more generally, every odd integer n has only finitely many integers k such that k ≺ n, and every
even integer n has only finitely many integers k such that n ≺ k.

Theorem 3.12 (Sharkovsky’s Theorem). Let f : R → R be a continuous function. If f has a
periodic point of minimal period p and p ≺ q, then f has a periodic point of minimal period q.

The following is an important corollary, and follows from the definition of Sharkovsky’s order

Corollary 3.13. Let f : R→ R be a continuous function. If f has a periodic point of minimal
period 3, then it has a periodic point of minimal period k for all k ∈ N.

Example 3.14. We will create a function that has a periodic point with minimal period p ≥ 1
for all p ≥ 1. By Sharkovsky’s Theorem, it is enough to create a continuous function with a
periodic point of minimum period 3.

https://en.wikipedia.org/wiki/Oleksandr_Mykolayovych_Sharkovsky
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Let f : R→ R be a polynomial of degree 2 such that f(0) = 1, f(1) = 2 and f(2) = 0. Then
f(x) = (x− 2)(ax+ b) for some a, b ∈ R, so

1 = f(0) = −2b, 2 = f(1) = −(a+ b).

Thus, a = −3/2 and b = −1/2, and so

f(x) = −1

2
(x− 2) (3x+ 1) .

One checks that
f2(x) = −(27x4 − 90x3 + 69x2 + 10x− 16)/8,

and f3 is then a polynomial of degree 8. These graphs can be seen in Figure 3.7. �
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Figure 3.7: The graphs of f , f2, and f3 from Example 3.14.

We prove a special case of Sharkovsky’s Theorem.

Proposition 3.15. Let f : I → I be a continuous function. If f has a periodic point of minimal
period 2 in I then f has a fixed point in I.

Proof. Let x0 be a periodic point of f with minimal period 2, so that we have x1 = f(x0) and
x0 = f(x1). Without loss of generality we may assume x0 < x1 (since both x0 and x1 have
minimal period 2). Thus,

x0 < f(x0), (3.4)

x1 > f(x1). (3.5)

From (3.4), f must lie above the identity function at x0, and from (3.5), f must lie below the
identity function at x1. Since f is continuous, by the Intermediate Value Theorem there must
be an x̄ ∈ (x0, x1) such that x̄ = f(x̄). Hence, f has a fixed point.

Proposition 3.15 gives us a little bit of milage. Of course, this is also a special case
of Sharkovsky’s Theorem.

Corollary 3.16. Let f : R→ R be a continuous function. If f has a periodic point of minimal
period 2n, then f has a periodic point of minimal period 2k for every k such that 0 ≤ k ≤ n.

Proof. Consider the function hn−1 := f2n−1
. As f is continuous, hn−1 is also continuous. Since

f has a periodic point x of minimal period 2n,

h2
n−1(x) =

(
f2n−1

)2
(x) = f2n(x) = x.

That is, hn−1 has a periodic point of minimal period 2, and therefore by Proposition 3.15, it
must have a fixed point. By the definition of hn−1, it follows that f has a periodic point of
minimal period 2n−1. Repeating this argument gives the result.

https://en.wikipedia.org/wiki/Intermediate_value_theorem
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Bifurcations in one dimensional
systems

Consider a family of maps fa : R→ R, defining a family of discrete dynamical systems depending
on a parameter a ∈ R. We have already seen an example of this: the logistic map in Section 1.1.3.
It has fixed points x = 0 and x = (a − 1)/a (for a > 0). If a 6= 1, the fixed points are distinct,
but if a = 1, there is only one fixed point. Further, for 0 < a < 1, the fixed point x = 0 is
attracting, for a > 1 it is repelling, and for a = 1 it is neither attracting nor repelling. This
sudden change of behavior is the topic of this section.

When a small, smooth change to a results in a dramatic change in the qualitative behavior
of the system, we have a bifurcation. The logistic map has a bifurcation at a = 1. We shall
come back to this example when talking about transcritical bifurcations in Section 4.2.

Example 4.1. Consider the family of functions fb(x) = −x2 + x + b. The fixed points are
x = ±

√
b, when possible. We will consider three cases, and we plot fb for different values of b

in Figure 4.1.

Case 1: b < 0. The are no (real) fixed points in this system.

Case 2: b = 0. There is exactly one fixed point: x = 0. However, since f ′b(x) = 1 − 2x, it
follows that f ′b(0) = 1, which is no help to us. But the map in this case is exactly the
logistic map with a = 1, so we know that the fixed point x = 0 is neither attracting nor
repelling.

Case 3: b > 0. There are two distinct fixed points. For x =
√
b,∣∣∣f ′b (√b)∣∣∣ =

∣∣∣1− 2
√
b
∣∣∣ .

Thus, by Theorem 3.5, when 0 < b < 1, then x =
√
b is an attracting stable fixed point.

But when b > 1, then x =
√
b is a repelling unstable fixed point. Note that Theorem 3.5

is inconclusive when b = 1. On the other hand, for x = −
√
b,∣∣∣f ′b (−√b)∣∣∣ =

∣∣∣1 + 2
√
b
∣∣∣ > 1

for all b > 0. Therefore, x = −
√
b is always a repelling unstable fixed point. �

Another useful tool to analyze the behavior of 1-parameter family of functions is to plot the
bifurcation diagram1. That is, a plot of the fixed points x as a function of the parameter
b. In this example, that is the solution to x = fb(x): namely, x2 − b = 0. This is plotted in
Figure 4.2; to distinguish between stable and unstable, normally one uses solid and dashed lines,

1One of the most famous bifurcation diagrams is the one from the logistic map.

33

https://en.wikipedia.org/wiki/Bifurcation_diagram


34 CHAPTER 4. BIFURCATIONS IN ONE DIMENSIONAL SYSTEMS

respectively. Here, the bifurcation diagram shows how we have two fixed points for positive b,
which remain as b decreases towards zero, when suddenly, we have one fixed point and then no
fixed points. �

x

y

(a) b < 0.

x

y

(b) b = 0.

x

y

(c) b > 0.

Figure 4.1: Plots of the family of functions fb from Example 4.1 for three sets of values for b.

b

x

1

Figure 4.2: The bifurcation diagram from Example 4.1, plotting x2 = b. The solid line signifies
stability, whereas the dashed line signifies instability.

A major ingredient when studying bifurcations is the Implicit Function Theorem (IFT) from
analysis. The IFT allows us to convert implicit expressions into explicit ones. That is, it gives
conditions under which an equation of the form G(x, y) = 0 is equivalent—at least locally—to
an expression of the form y = h(x).

Theorem 4.2 (Implicit Function Theorem). Let G : R2 → R be continuously differentiable on
an open set U ⊆ R2. If for (x0, y0) ∈ U , G(x0, y0) = 0 and

∂G

∂y
(x0, y0) 6= 0,

then there exist open intervals I, J ⊆ R, with x0 ∈ I, y0 ∈ J , and I×J ⊆ U , and a continuously
differentiable function h : I → J such that h(x0) = y0 and for all x ∈ I, G(x, h(x)) = 0.

x

y

x0

I

y0

J

Figure 4.3: An example of the Implicit Function Theorem. Here, G(x, y) = 0 is plotted in red,
with the function h(x) in blue. The intervals I and J are also filled in with blue on the axes.

https://en.wikipedia.org/wiki/Implicit_function_theorem


4.1. SADDLE NODE BIFURCATION 35

We plot an example of Implicit Function Theorem in Figure 4.3. Note that in a sufficiently
small interval I, the function h is unique. Furthermore, if G is r times continuously differentiable,
then so is h as

h′(x0) = −
∂G
∂x (x0, y0)
∂G
∂y (x0, y0)

.

The IFT allows us to locally express fixed points x of a function fa in terms of the parameter
a; that is, it gives us conditions for the existence of an expression x = h(a). To apply the theorem,
we need to be a little more precise: rather than fa : I → I, a ∈ J , we write fa(x) = F (a, x),
where F : J×I → I. Then fixed points of fa are the x ∈ I such that for some a ∈ J , F (a, x) = x.

Corollary 4.3. Let I, J ⊂ R and F : J × I → I be a continuously differentiable function. If for
some ā ∈ J , x̄ ∈ I, F (ā, x̄) = x̄ and

∂F

∂x
(ā, x̄) 6= 1,

then there exist open intervals K ⊆ I, L ⊆ J with x̄ ∈ K, ā ∈ L, and a unique function
h : L→ K such that h(ā) = x̄ and for all a ∈ K, F (a, h(a)) = h(a).

Proof. Let G(a, x) := F (a, x)−x. Then G(a, x) = 0 if and only if F (a, x) = x, and ∂G
∂x (a, x) 6= 0

if and only if ∂F
∂x (a, x) 6= 1. Then we apply the IFT to G.

Recall that a fixed point x of a function fa is hyperbolic if |f ′a(x)| 6= 1. Corollary 4.3 shows
us that around any hyperbolic fixed point there is a neighborhood within which we may vary
the parameter a without changing the properties of the fixed point and without any new fixed
points emerging. In the cases where a fixed point is not hyperbolic, we may see some more
interesting behavior—namely, a bifurcation!

4.1 Saddle node bifurcation

A bifurcation like the one in Example 4.1, where as the parameter varies, two fixed points
approach each other, then coincide and disappear, is called a saddle-node bifurcation . This
is the simplest scenario where two fixed points “collide” and mutually annihilate each other.
The next theorem helps us analyze the behavior of systems with a non-hyperbolic fixed point
that is also a saddle-node.

Recall the definition of the differentiability classes. The class of continuous functions is
denoted by C0, and we define Ck recursively for positive integers k; namely, Ck is the class of
functions whose (partial) derivatives lie in Ck−1. So a function is in C1 if it is continuously
differentiable, and a function is in C2 if its derivative is continuously differentiable. A function
is smooth if it is contained in C∞.

Theorem 4.4 (Saddle-node bifurcation). Let I, J ⊂ R and F : J × I → I be a C2-function.
Let fa(x) = F (a, x) for all a ∈ J, x ∈ I. Suppose that there is a point (ā, x̄) ∈ J × I such that

1. fā(x̄) = F (ā, x̄) = x̄,

2. f ′ā(x̄) = ∂F
∂x (ā, x̄) = 1,

3. f ′′ā (x̄) = ∂2F
∂x2

(ā, x̄) 6= 0, and

4. ∂F
∂a (ā, x̄) 6= 0.

Then there exists an open interval K, containing x̄, and a C2-function h : K → R such that
h(x̄) = ā and fh(x)(x) = x. Moreover, h′(x̄) = 0 and h′′(x̄) 6= 0.
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Proof. Consider the function G(a, x) = F (a, x)− x. Then by (1) G(ā, x̄) = 0, and by (4)

∂G

∂a
(ā, x̄) 6= 0.

By the Implicit Function Theorem, there exists an interval K and a function h : K → R such
that h(x̄) = ā and for all x ∈ K, G(h(x), x) = 0. That is, fh(x)(x) = x.

Let us turn to the statement concerning h′ and h′′. We implicitly differentiate2 the expression
G(h(x), x) = 0 with respect to x:

0 =
d

dx
(G(h(x), x)) =

∂G

∂a
(h(x), x) · h′(x) +

∂G

∂x
(h(x), x) . (4.1)

Solving for h′ and setting x = x̄ gives

h′(x̄) = −
∂G
∂x (ā, x̄)
∂G
∂a (ā, x̄)

= −
∂F
∂x (ā, x̄)− 1
∂F
∂a (ā, x̄)

= − 0
∂F
∂x (ā, x̄)

= 0

Implicitly differentiating (4.1) with respect to x, it follows that (can you show this?)

h′′(x̄) = −
∂2F
∂x2

(ā, x̄)
∂F
∂a (ā, x̄)

. (4.2)

By (3), h′′(x̄) 6= 0, and we are done.

If the conditions of Theorem 4.4 are satisfied, the point (ā, x̄) is a saddle-node bifurcation.
The theorem allows us to examine stability around the fixed point by looking at the second
derivative of fh(x)(x). By assumption we have f ′ā(x̄) = 1 and f ′′ā (x̄) 6= 0, so that f ′′h(x)(x) 6= 0 in

a neighborhood of x̄. From Equation (4.2), if h′′(x) > 0, then f ′′ā (x̄) and ∂F
∂a (ā, x̄) have opposite

signs, and if h′′(x) < 0, then they have the same sign. Let’s consider two sets of values for f ′′ā (x̄).

Case 1: f ′′ā (x̄) < 0. If x < x̄, it follows that f ′h(x)(x) > 1, and if x > x̄, then f ′h(x)(x) < 1. Plots
of these situations are seen in Figure 4.4.

a

x

stable

unstable

x̄

ā

(a) h′′(x) > 0.

a

x

stable

unstable

x̄

ā

(b) h′′(x) < 0.

Figure 4.4: Plots of a = h(x).

Case 2: f ′′ā (x̄) > 0. Similar to above, if x < x̄, then f ′h(x)(x) < 1, and when x > x̄, then

f ′h(x)(x) > 1. Again, we plot these bifurcation diagrams in Figure 4.5.

2Recall the chain rule.

https://en.wikipedia.org/wiki/Chain_rule
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a

x

unstable

stable

x̄

ā

(a) h′′(x) > 0.

a

x

stable

unstable

x̄

ā

(b) h′′(x) < 0.

Figure 4.5: Plots of a = h(x).

4.2 Transcritical bifurcation

In some situations, there are fixed points that should never disappear like in the saddle-node
bifurcation. For example, in the logistic model for population, x = 0 is a fixed point that
should remain a fixed point regardless of the value of a. However, it stability can change, and
bifurcations such as these are called transcritical bifurcations.

Example 4.5. Let fa(x) := ax(1 − x). The fixed points of fa are x = 0 and x = (a − 1)/a,
provided a 6= 0. Set F (a, x) = fa(x). There is a bifurcation at (ā, x̄) = (1, 0), but this is not a
saddle node bifurcation since ∂F

∂a (1, 0) = 0 6= 1. For the stability, we recall Theorem 3.5, so we
consider the derivative: f ′a(x) = a(1− 2x). We look at the two fixed points.

� For x = 0, |f ′a(0)| = |a|. Therefore, x = 0 is stable when |a| < 1 and unstable when |a| > 1.

� For x = (a − 1)/a, |f ′a(x)| = |2 − a|. Thus, x is a stable when 1 < a < 3 and unstable
when |a| < 1 or |a| > 3.

x

y

(a) a < 1.

x

y

(b) a = 1.

x

y

(c) a > 1.

Figure 4.6: We plot the function fa(x) = ax(1− x) for different values of a in red together with
the identity function in blue.

There are two fixed points for all a, except a = 1, and the stability properties of the fixed
points change at a = 1. The bifurcation diagram is plotted in Figure 4.7. �

a

x

Figure 4.7: The bifurcation diagram for Example 4.5. We plot two curves x = 0 and x =
(a− 1)/a. This shows an example of a transcritical bifurcation.
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In the proof of the next theorem, we use a Taylor expansion to compute a partial derivative.
Recall that the Taylor expansion of a function ψ : R→ R about a point x̄ ∈ R is

ψ(x) = ψ(x̄) + ψ′(x̄)(x− x̄) +
1

2
ψ′′(x̄)(x− x̄)2 +O

(
(x− x̄)3

)
.

All the higher order terms in O
(
(x− x̄)3

)
are also multiples of (x− x̄)3.

Theorem 4.6 (Transcritical bifurcation (special case)). Let I, J ⊂ R and F : J × I → I be a
C2-function. Suppose that there is a point (ā, x̄) ∈ J × I such that

1. for all a ∈ J , F (a, x̄) = x̄,

2. ∂F
∂x (ā, x̄) = 1,

3. ∂2F
∂x2

(ā, x̄) 6= 0, and

4. ∂2F
∂a∂x(ā, x̄) 6= 0.

Then there exists an open interval K ⊆ J and a unique C1-function g : K → I such that
g(ā) = x̄ and for all a ∈ K \ {ā}, g(a) 6= x̄ and F (a, g(a)) = g(a).

Proof. Define G(a, x) = F (a, x)−x. We cannot apply the IFT as in the previous theorems since
both

∂G

∂a
(ā, x̄) = 0,

∂G

∂x
(ā, x̄) = 0.

We will define a new function, but before we do that, note that (1) implies that

lim
x→x̄

F (a, x)− x
x− x̄

= lim
x→x̄

F (a, x)− x̄− (x− x̄)

x− x̄

= lim
x→x̄

F (a, x)− F (a, x̄)

x− x̄
− 1

=
∂F

∂x
(a, x̄)− 1.

(4.3)

Now, define

H(a, x) :=


F (a, x)− x
x− x̄

x 6= x̄,

∂F

∂x
(a, x̄)− 1 x = x̄.

By (4.3), since F is a C2-function, H(a, x) is a C1-function. We will show that H satisfies the
other conditions of the Implicit Function Theorem. By assumption (4) and (4.3), H(ā, x̄) = 0,
so we must also show that ∂H

∂x (ā, x̄) 6= 0.
Now we need to apply our Taylor expansion to ψ(x) = F (a, x) − x. From assumption (1),

ψ(x̄) = 0, so the constant term vanishes. Thus for a fixed a,

F (a, x)− x =

(
∂F

∂x
(a, x̄)− 1

)
(x− x̄) +

1

2

(
∂2F

∂x2
(a, x̄)

)
(x− x̄)2 +O((x− x̄)3). (4.4)

From the definition of H and applying (4.4),

∂H

∂x
(a, x) =

∂

∂x

(
F (a, x)− x
x− x̄

)
=

(
∂F
∂x (a, x)− 1

)
(x− x̄)− (F (a, x)− x)

(x− x̄)2

=

(
∂F
∂x (a, x)− 1

)
(x− x̄)−

(
∂F
∂x (a, x̄)− 1

)
(x− x̄)

(x− x̄)2
− 1

2

∂2F

∂x2
(a, x̄) +O(x− x̄)

=
∂F
∂x (a, x)− ∂F

∂x (a, x̄)

x− x̄
− 1

2

∂2F

∂x2
(a, x̄) +O(x− x̄)
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Now to finish our Herculean effort, we take the limit as x→ x̄. Since H is C1,

∂H

∂x
(a, x̄) = lim

x→x̄

∂H

∂x
(a, x) =

∂2F

∂x2
(a, x̄)− 1

2

∂2F

∂x2
(a, x̄) =

1

2

∂2F

∂x2
(a, x̄).

By assumption (3), ∂2F
∂x2

(a, x̄) 6= 0, so ∂H
∂x (ā, x̄) 6= 0.

Now we have shown that the Implicit Function Theorem applies to H. Thus, there exists a
unique function g : K → I such that g(ā) = x̄ and H(a, g(a)) = 0, which gives F (a, g(a)) = g(a)
for all a ∈ K. By implicitly differentiating H(a, g(a)) = 0 with respect to a,

g′(ā) = −
∂H
∂a (ā, x̄)
∂H
∂x (ā, x̄)

= (−2)
∂
∂a

(
∂F
∂x (ā, x̄)− 1

)
∂2F
∂x2

(ā, x̄)
= (−2)

∂2F
∂a∂x(ā, x̄)
∂2F
∂x2

(ā, x̄)
6= 0. (4.5)

This shows that g(a) 6= x̄ in some interval around ā.

We analyze the implications of Theorem 4.6. We will see, mathematically, what we saw in
Example 4.5; namely, the number of fixed points remains constant, but their stability changes.
We have two cases to consider: (1) x = x̄, the fixed point of fa(x) and (2) x = g(a), the function
produced by Theorem 4.6.

Observe that the first two assumptions of Theorem 4.6 require that the system fa(x) have a
bifurcation at (ā, x̄) since the first requires x̄ is a fixed point and the second requires f ′ā(x̄) = 1.

Case 1: x = x̄. Because

∂F

∂x
(ā, x̄) = 1

∂2F

∂a∂x
(ā, x̄) 6= 0,

the first partial ∂F
∂x is changing with respect to a. Therefore, (think back to Theorem 3.5)

the stability must change right at a = ā. In other words for a < ā < b, the stability at
(a, x̄) is different from the stability at (b, x̄).

Case 2: x = g(a). Let us consider the Taylor expansion of ∂F
∂x around ā; recall that g(ā) = x̄.

We apply the formula (4.5) to get

∂F

∂x
(a, g(a)) =

∂F

∂x
(ā, x̄) +

(
∂2F

∂x∂a
(ā, x̄) +

∂2F

∂x2
(ā, x̄)

dg

da
(ā)

)
(a− ā) +O

(
(a− ā)2

)
= 1 +

(
∂2F

∂x∂a
(ā, x̄)− (2)

∂2F

∂x2
(ā, x̄)

∂2F
∂a∂x(ā, x̄)
∂2F
∂x2

(ā, x̄)

)
(a− ā) +O

(
(a− ā)2

)
= 1− ∂2F

∂x∂a
(ā, x̄)(a− ā) +O

(
(a− ā)2

)
.

The relevant approximation of values a near ā is

∂F

∂x
(a, g(a)) ≈ 1− ∂2F

∂x∂a
(ā, x̄)(a− ā).

the stability changes at a = ā, but the change is in the opposite direction to the change
for x = 0.

In summary, with a transcritical bifurcation, we have an exchange of stabilities between two
fixed points; see another example in Figure 4.8.
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a

x

x = x̄

x = g(a)

ā

(a)
∂2F

∂a∂x
(ā, x̄) > 0.

a

x

x = x̄

x = g(a)

ā

(b)
∂2F

∂a∂x
(ā, x̄) < 0.

Figure 4.8: Two examples of transcritical bifurcations.

4.3 Pitchfork bifurcation

The third kind of bifurcation is the pitchfork bifurcation, which involves systems with some
kind of symmetry. For example, a spacial symmetry between left and right. This description
may not be clear in the examples we consider, but the name should be clear in the bifurcation
diagrams. Before we explain further, we consider an example.

Example 4.7. Let fa(x) = x+ax−x3 The fixed points of fa satisfy x = x+ax−x3. Therefore,
the potential fixed points are x = 0 and x = ±

√
a. We consider the fixed points for different

values of a. Figure 4.9 plots the three cases we consider.

Case 1: a < 0. We have only one fixed point; namely, x = 0. Thus,∣∣f ′a(0)
∣∣ = |1 + a|,

When −2 < a < 0, then x = 0 is a stable and attracting fixed point, and for a < −2,
x = 0 is unstable and repelling.

Case 2: a = 0. Like in the first case, we still have only one fixed point: x = 0. However,
f ′a(0) = 1, so its stability is not immediately clear. Consider instead

|f0(x)| = |x− x3| = |x(1− x2)| = |x||1− x2|.

So in a neighborhood around x = 0, say |x| < 1, it follows that
∣∣1− x2

∣∣ < 1. Therefore,
for all x such that |x| < 1, |f0(x)| < |x|. By Proposition 3.8, the fixed point at x = 0 is
stable and attracting.

Case 3: a > 0. We have all three fixed points {0,±
√
a}. Thankfully, the stability of these

points are easy to determine.

� x = 0. Here, |f ′a(0)| = |1 + a| = 1 + a > 1 for all a > 1. Hence the fixed point is
repelling and therefore unstable.

� x = ±
√
a. In this case, |f ′a (±

√
a) | = |1−2a|, so that the fixed points are both stable

and attracting for 0 < a < 1, and (both) unstable and repelling for a > 1.

Like with the transcritical bifurcation, there is a fixed point for all values of a that changes
stability. However, at the bifurcation point—or maybe tri furcation point is better—two new
fixed points appear and the other fixed point, in this case x = 0, changes stability. The bifurca-
tion diagram demonstrates this phenomenon and clarifies the name “pitchfork.”

To see the symmetry in this example, consider the change of variables x 7→ −x in the
continuous system x′ = fa(x). Since the system is unchanged by this map (since the negative
signs cancel), we say the system is invariant to this change of variable, and thus, it is invariant
to this symmetry. �
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x

y

(a) a < 0.

x

y

(b) a = 0.

x

y

(c) a > 0.

Figure 4.9: Plots of three graphs fa for the three cases considered in Example 4.7.

a

x

Figure 4.10: The pitchfork bifurcation occurring in Example 4.7.

Theorem 4.8 (Pitchfork bifurcation (special case)). Let F : J × I → R be a C3-function.
Suppose that there is a point (ā, x̄) ∈ J × I such that

1. F (a, x̄) = x̄ for all a ∈ J ;

2. ∂F
∂x (ā, x̄) = 1;

3. ∂2F
∂x2

(ā, x̄) = 0;

4. ∂2F
∂x∂a(ā, x̄) 6= 0; and

5. ∂3F
∂x3

(ā, x̄) 6= 0.

Then there exists an open interval U ⊆ I containing x̄ and a unique function h : U → J such
that h(x̄) = ā, F (h(x), x) = x, h′(x̄) = 0, h′′(x̄) 6= 0 and h(x) 6= ā for all x ∈ U \ {x̄}.

Proof outline. We proceed like we did in the proof of Theorem 4.6. Set

H(a, x) :=

{
F (a,x)−x
x−x̄ x 6= x̄,

limx→x̄
F (a,x)−x
x−x̄ x = x̄.

We need to show that we can apply Implicit Function Theorem to H to construct the required
function h such that F (h(x), x) = x in a neighborhood U of x̄. Calculate the derivatives of h
via implicit differentiation. To see that h′(x) = 0, begin with the expression H(h(x), x) = 0 and
differentiate with respect to x.

To see that h′′(x̄) 6= 0, we differentiate F (h(x), x) = x with respect to x. (To simplify
notation here, we write Fx for ∂F

∂x and so on.) We obtain

Fx(h(x), x) + Fa(h(x), x)h′(x) = 1.

Implicitly differentiating again with respect to x, we obtain

Fxx + Faxh
′ + (Fax + Faah

′)h′ + Fah
′′ = 0. (4.6)
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Evaluating at x̄ (and using h′(x̄) = 0) gives

Fa(ā, x̄)h′′(x̄) = −Fxx(ā, x̄) = 0,

which doesn’t help, as we have assumed that Fa(ā, x̄) = 0. Thus we differentiate (4.6) again
with respect to x. After simplifying and substituting x = x̄,

Fxxx(ā, x̄) + 3Fax(ā, x̄)h′′(x̄) = 0.

Thus,

h′′(x̄) = −1

3

Fxxx(ā, x̄)

Fax(ā, x̄)
6= 0 (4.7)

as required.

Note that there exist two intervals, say J1 = (a1, ā) and J2 = (ā, a2), with a1 < ā < a2

such that in one of the intervals there exists exactly one fixed point and in the other there exist
exactly three fixed points. We look at the stability property of the fixed points, and like in the
transcritical bifurcation, there are two cases to consider: (1) the fixed point x = x̄ for all a and
(2) the fixed points x such that h(x) = a.

Case 1: x = x̄. We look at the Taylor expansion of ∂F
∂x (a, x̄) about the point a = ā:

∂F

∂x
(a, x̄) =

∂F

∂x
(ā, x̄) +

∂2F

∂a∂x
(ā, x̄)(a− ā) +O

(
(a− ā)2

)
= 1 +

∂2F

∂a∂x
(ā, x̄)(a− ā) +O

(
(a− ā)2

)
.

Because ∂2F
∂x∂a(ā, x̄) 6= 0, the stability changes at a = ā. This gives a precise means to

analyze exactly how the stability changes.

� If ∂2F
∂a∂x(ā, x̄) > 0 then

{
x̄ stable and attracting for a < ā,
x̄ unstable and repelling for a > ā.

� If ∂2F
∂a∂x(ā, x̄) < 0 then

{
x̄ stable and attracting for a > ā,
x̄ unstable and repelling for a < ā.

Case 2: a = h(x). We will use the Taylor series expansion of ∂F
∂x (h(x), x) around x̄ to see how

the derivative is changing. Using h′(x̄) = 0, ∂2F
∂x2

(ā, x̄) = 0, and (4.7), we get

∂F

∂x
(h(x), x) =

∂F

∂x
(ā, x̄) +

(
∂2F

∂a∂x
(ā, x̄)h′(x̄) +

∂2F

∂x2
(ā, x̄)

)
(x− x̄)

+
1

2

[
∂3F

∂x3
(ā, x̄) + 2

∂3F

∂x2∂a
(ā, x̄)h′(x̄) +

∂3F

∂x∂a2
(ā, x̄)

(
h′(x̄)

)2
+

∂2F

∂x∂a
(ā, x̄)h′′(x̄)

]
(x− x̄)2 +O

(
(x− x̄)3

)
= 1 +

1

2

[
∂3F

∂x3
(ā, x̄) +

∂2F

∂x∂a
(ā, x̄)h′′(x̄)

]
(x− x̄)2 +O

(
(x− x̄)3

)
= 1 +

1

3

∂3F

∂x3
(ā, x̄)(x− x̄)2 +O

(
(x− x̄)3

)
.

That is, near x = x̄, we have the approximation:

∂F

∂x
(h(x), x) ≈ 1 +

1

3

∂3F

∂x3
(ā, x̄)(x− x̄)2. (4.8)

Equation (4.8) shows that both fixed points have the same stability property because the
square terms (x− x̄)2 is always nonnegative. Therefore, the stability of these fixed points
are opposite to that of x̄. The four possibilities of pitchfork bifurcations are displayed in
Figure 4.11.
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a

x

x̄

ā

h(x)
∂2F

∂a∂x
(ā, x̄) > 0

∂3F

∂x3
(ā, x̄) < 0

⇒ h′′(x̄) > 0

a

x

x̄

ā

h(x)
∂2F

∂a∂x
(ā, x̄) > 0

∂3F

∂x3
(ā, x̄) > 0

⇒ h′′(x̄) < 0

a

x

x̄

ā

h(x)
∂2F

∂a∂x
(ā, x̄) < 0

∂3F

∂x3
(ā, x̄) < 0

⇒ h′′(x̄) < 0

a

x

x̄

ā

h(x)
∂2F

∂a∂x
(ā, x̄) < 0

∂3F

∂x3
(ā, x̄) > 0

⇒ h′′(x̄) > 0

Figure 4.11: Four possibilities of pitchfork bifurcations depending on the values of second and
third partial derivatives of F (a, x).
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4.4 Period doubling bifurcation

The period doubling bifurcation does exactly as it sounds: the bifurcation point doubles the
period of the system. The typical suspect for this kind of bifurcation is the logistic map.

Example 4.9. We return again to the logistic map fa(x) = ax(1−x) for a 6= 0. Recall that we
have fixed points

� x = 0, which is stable for a < 1 and unstable for a > 1 and

� x = a−1
a , which is stable for 1 < a < 3; unstable for a < 1 and a > 3.

This time, we examine what happens at a = 3. We know that the fixed point x = 2
3 changes its

stability property at a = 3, but perhaps something else also happens here. To investigate this,
we begin by looking for periodic points of fa:

f2
a (x) = a(ax(1− x))(1− (ax(1− x))) = −a3x4 + 2a3x3 − a3x2 − a2x2 + a2x.

The periodic points of fa of period two are the fixed points of f2
a . Simplifying and then

factorizing x = f2
a (x), the fixed points must satisfy

0 = x

(
x− a− 1

a

)(
x2 −

(
a+ 1

a

)
x+

a+ 1

a2

)
.

Since we know that x = 0 and x = a−1
a are already fixed points of fa, we focus the other factor.

Thankfully, it is just a quadratic polynomial, so we can immediately write down the solutions.
After some simplifications, the two additional fixed points are

x =
a+ 1±

√
(a+ 1)(a− 3)

2a
.

Since (a + 1)(a − 3) < 0 when −1 < a < 3, there are only the initial two fixed points of fa(x)
in this interval. For a = 3, there is a unique solution, namely x = 2/3, and for a > 3, there are
two solutions. By calculating the derivative of f2

a (x) with respect to x at these points, we can
see that there is an r > 0 such that for a ∈ (3, 3 + r), they are stable fixed points of f2. Hence
they give rise to stable periodic orbits of f of minimal period 2. Thus, we extend the bifurcation
diagram to include these, as seen in Figure 4.12.

With further analysis of the logistic map, one can show that additional period doubling
bifurcation occurs for a > 3. The bifurcation diagram of the logistic map is given in Figure 4.13.
�

a

x

1

fixed point2
3

3

periodic point

periodic point

Figure 4.12: A snapshot of the bifurcation diagram from Example 4.9, given by the logistic map
with a = 3.
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Figure 4.13: The bifurcation diagram of the logistic map fr(x) = rx(1− x).

In the next theorem we write F 2(a, x) := F (a, F (a, x)), which should be interpreted as f2
a (x).

Theorem 4.10 (Period doubling bifurcation). Let F : J × I → R be a C3-function and define
F 2(a, x) := F (a, F (a, x)) for (a, x) ∈ J × I. Suppose that for (ā, x̄) ∈ J × I, the following hold.

1. F (ā, x̄) = x̄;

2. ∂F
∂x (ā, x̄) = −1;

3. ∂2F
∂x2

(ā, x̄) = 0;

4. ∂F 2

∂a (ā, x̄) = 0;

5. ∂2F 2

∂a∂x (ā, x̄) 6= 0;

6. ∂3F 2

∂x3
(ā, x̄) 6= 0.

Then there exists an interval U ⊆ J and a unique C3-function g : U → I such that g(ā) = x̄,
F (a, g(a)) = g(a) for a ∈ U . In addition there exists an interval V ⊆ I and a unique C2-function
h : V → I such that h(x̄) = ā, F 2(h(x), x) = x, h′(x̄) = 0 and h′′(x̄) 6= 0.

Idea. Apply the Implicit Function Theorem to F and Theorem 4.8 to the function F 2.

Now we interpret Theorem 4.10. The function g(a) = x describes the fixed point “prong” of
the pitchfork, and the function h(x) = a describes the periodic points of period two—that is,
the other two “prongs” of the pitchfork. The fixed point x = g(a) is a stable (resp. unstable)
fixed point of fa if and only if it is a stable (resp. unstable) fixed point of f2

a . Note that

∂F 2

∂x
(a, x) =

∂F

∂x
(a, F (a, x))

∂F

∂x
(a, x).

Therefore, since F (a, g(a)) = x = g(a),

∂F 2

∂x
(a, g(a)) =

(
∂F

∂x
(a, g(a))

)2

.

Thus,

∂F 2

∂x
(ā, x̄) = 1,

∂2F 2

∂a∂x
(ā, x̄) 6= 0,

so the stability changes at (ā, x̄). In our example, we see that in the region around a = 3, the
behavior is like a pitchfork bifurcation. The fixed point x = g(a) changes stability at a = ā.
In a sufficiently small interval around ā, say a < ā < b, there are either two periodic points in
a < ā or in ā < b, and in the other interval there are no periodic points.
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a

x

fixed point
x̄

ā

periodic point

periodic point

∂2F

∂a∂x
(ā, x̄) > 0

∂3F 2

∂x3
(ā, x̄) < 0

a

x

fixed point
x̄

ā

periodic point

periodic point

∂2F

∂a∂x
(ā, x̄) < 0

∂3F 2

∂x3
(ā, x̄) > 0

Figure 4.14: Locally around the point (ā, x̄), the diagram look like a pitchfork bifurcation.

4.5 Miscellaneous types of bifurcations

In the previous sections of this chapter, we considered some of the most well-known and widely
occurring types of bifurcations. In this section, we go through two short examples of additional
phenomena that may occur.

Example 4.11 (Generalized saddle-node bifurcation). Let fa(x) = x− (x2 − a)(x2 − 4a). The
fixed points of fa(x) are {±

√
a,±2

√
a}. For a < 0, there are no fixed points, and there is exactly

1 fixed point when a = 0. For a > 0, there are precisely 4 fixed points. Like with the saddle-node
bifurcation in Section 4.1, a number of fixed points appear from (or disappear to) nothing.

We look at the qualitative behavior of these fixed points in a neighborhood around a = 0 by
considering the derivative, f ′a(x) = 1 + 10ax− 4x3.

� x =
√
a. Then |f ′a(

√
a)| = |1 + 6a

√
a| > 1 for all a > 0, so x =

√
a is a repelling and

unstable fixed point.

� x = −
√
a. Then |f ′a(−

√
a)| = |1 − 6a

√
a| < 1 for positive a in a neighborhood of 0 (e.g.

for 0 < a < 1/3), so x = −
√
a is an attracting and stable fixed point.

� x = 2
√
a. Then |f ′a(2

√
a)| = |1− 12a

√
a| < 1 for positive a in a neighborhood of zero, so

x = 2
√
a is an attracting and stable fixed point.

� x = −2
√
a. Then |f ′a(−2

√
a)| = |1 + 12a

√
a| > 1 for all a > 0 so x = −2

√
a is a repelling

and unstable fixed point.

Note that for a = 0, the fixed point x = 0 is unstable. We plot fa(x) for different values of
a in Figure 4.15, and the bifurcation diagram can be seen in Figure 4.15d. �

Example 4.12 (Generalized pitchfork bifurcation). Let fa(x) = x − x(x2 − a)(x2 − 4a). The
fixed points of fa(x) are {0,±

√
a,±2

√
a}. For a ≤ 0, we have only one fixed point, and for

a > 0, we have 5 fixed points. As in Example 4.11, we look at the qualitative behavior of these
fixed points in a neighborhood of 0 by considering the derivative, f ′a(x) = 1−4a2 + 15ax2−5x4.

� x = 0. Then |f ′a(0)| = |1 − 4a2| < 1 for all a 6= 0 in a neighborhood around a = 0, so in
this region, x = 0 is an attracting and stable fixed point. Further analysis shows that for
a = 0 the fixed point is also stable.
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� x = ±
√
a. Then |f ′a(±

√
a)| = |1 + 6a2| > 1 for all a 6= 0, so the fixed points x = ±

√
a are

repelling and unstable.

� x = ±2
√
a. Then |f ′a(±2

√
a)| = |1 − 24a2| < 1 for all a 6= 0 in a neighborhood around

a = 0, so the fixed points x = ±2
√
a are attracting and stable. �

x

y

(a) a < 0.

x

y

(b) a = 0.

x

y

(c) a > 0.

a

x
√
a, stable

−
√
a, unstable

2
√
a, unstable

−2
√
a, stable

(d) The bifurcation diagram.

Figure 4.15: Plots from Example 4.11 for different values of a together with its bifurcation
diagram.

x

y

(a) a < 0.

x

y

(b) a = 0.

x

y

(c) a > 0.

a

x
√
a, unstable

−
√
a, unstable

2
√
a, stable

−2
√
a, stable

(d) The bifurcation diagram.

Figure 4.16: We plot fa(x) from Example 4.12 for different values of a together with its bifur-
cation diagram.
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Chapter 5

Linear discrete dynamical systems

Let A be a d× d matrix and define f : Rd → Rd by f(x) = Ax. This function gives rise to the
linear dynamical system

xn+1 = Axn,

which we write as xn = Anx0. As usual, the fixed points of the system satisfy Ax = x. Thus,
we have either

(i) x = 0 or

(ii) x is an eigenvector of A with eigenvalue 1.

Example 5.1. We look at the behavior of the system for different functions f (or matrices A).
Throughout, we use a fixed basis (x, y) for R2.

1. Expansion in two directions.

A =

(
2 0
0 2

)
,

Eigenvectors: x, y,
Eigenvalues: 2, 2.

x

y

2. Contractions and change of sign

A =

(
−1/2 0

0 1/2

)
,

Eigenvectors: x, y,
Eigenvalues: −1/2, 1/2.

x

y

3. Expansion and contraction

A =

(
2 0
0 1/2

)
,

Eigenvectors: x, y,
Eigenvalues: 2, 1/2.

x

y

4. Rotation and contraction

49
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A =

(
0 −1/2

1/2 0

)
,

Eigenvectors: −1

2

(
1
i

)
,

1

2

(
−1
i

)
,

Eigenvalues: −i/2, i/2.

x

y

The rotation and contraction from this matrix can be more easily seen by rewriting it as

A =

(
0 −1/2

1/2 0

)
=

1

2

(
cos(π/2) − sin(π/2)
sin(π/2) cos(π/2)

)
.

Note that the matrix on the right is standard form of a matrix that rotates x and y by
θ = π/2. �

5.1 Matrix norms

We want to understand the behavior of dynamical systems of the form xn = Anx0. In order to
discuss stability, we need notions of distance, so our immediate goal is to transfer ideas of norms
on vector spaces to matrices in a useful way.

Fix a basis (e1, . . . , ed) of Rd, and we assume throughout that x ∈ Rd is written as x =
∑
xiei,

where xi ∈ R. Recall the standard inner product (or “dot product”) of two vectors x, y ∈ Rd is

〈x, y〉 :=

d∑
i=1

xiyi.

This gives rise to the L2-norm ‖·‖2 on Rd given by

‖x‖2 := 〈x, x〉1/2 =

√√√√ d∑
i=1

|xi|2.

Note that this norm corresponds with the usual concept of Euclidean distance in Rd. Therefore,
we will drop the 2, and take ‖·‖ to always be the Euclidean norm. Treating matrices as vectors
in a vector space, naturally transfers this norm to matrices in an entry-wise fashion.

Definition 5.2. The matrix norm ‖·‖ on Matd×d(R) is given by

‖A‖ =

√√√√ d∑
i,j=1

|aij |2.

Proposition 5.3. If A ∈ Matd×d(R), then for all x ∈ Rd,

‖Ax‖ ≤ ‖A‖ ‖x‖ .

Proof. For i ∈ {1, . . . , d}, denote the ith row of A by Ai, and let 〈·, ·〉 denote the standard inner
product on Rd. Then Ax is the vector with ith entry equal to 〈Ai, x〉. Thus,

‖Ax‖2 =

d∑
i=1

〈Ai, x〉2 ≤
d∑
i=1

(〈Ai, Ai〉〈x, x〉)

= 〈x, x〉
d∑
i=1

d∑
j=1

(Ai)j(Ai)j = ‖A‖2 ‖x‖2 .

https://en.wikipedia.org/wiki/Lp_space#The_p-norm_in_finite_dimensions
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5.2 Jordan blocks

Eigenvalues and eigenvectors help us understand the action of a d-dimensional matrix A on a
vector x ∈ Rd. Furthermore, by using eigenvalues to represent a matrix in diagonal or block
diagonal form, we can more easily study the repeated action of a matrix A on a vector x—that
is, Anx for n ∈ N.

Definition 5.4. A square matrix J is called a Jordan block if it is of the form

J =


λ 1 0 . . . 0
0 λ 1 . . . 0
...

...
. . .

. . .
...

0 . . . 0 λ 1
0 . . . 0 0 λ

 ,

for λ ∈ C. That is, J has λ along its diagonal and 1 along its super-diagonal. A square matrix
A is said to be in Jordan normal form if it is of the form

A =


J1 0 . . . 0
0 J2 0
...

. . .
...

0 0 . . . Jm

 ,

where each Ji is a Jordan block.

Theorem 5.5 (Jordan normal form). For any square matrix A there exists an invertible matrix
S such that S−1AS is in Jordan normal form.

Example 5.6. Consider the matrices

A =


2 4 −6 0
4 6 −3 −4
0 0 4 0
0 4 −6 2

 , S =


1 −1/4 0 1
0 1/4 3 1
0 0 2 0
1 0 0 1

 .

The inverse of S is

S−1 =


−1 −1 3/2 2
−4 0 0 4
0 0 1/2 0
1 1 −3/2 −1

 ,

and A is conjugated into Jordan normal form via S:

J = S−1AS =


2 1 0 0
0 2 0 0
0 0 4 0
0 0 0 6

 .

The entries on the diagonal of the Jordan normal form of A are the eigenvalues of A. Thus,
if A has a complex eigenvalue, the matrix S−1AS is complex. But for some purposes, it is useful
to exclusively use real matrices.

Definition 5.7. A square matrix J is called a real Jordan block if it is either a Jordan block,
as in Definition 5.4, with λ ∈ R, or has the form

B I 0 . . . 0
0 B I . . . 0
...

...
. . .

. . .
...

0 . . . 0 B I
0 . . . 0 0 B

 ,

https://en.wikipedia.org/wiki/Jordan_normal_form
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where B =
(
a −b
b a

)
, a, b ∈ R and I = ( 1 0

0 1 ).
A square matrix A is in real Jordan normal form if it is of the form

A =


J1 0 . . . 0
0 J2 0
...

. . .
...

0 0 . . . Jm

 ,

where each Ji is a real Jordan block.

Theorem 5.8. For any real square matrix A there exists a real invertible matrix S such that
S−1AS is in real Jordan normal form.

The Jordan normal form allows us to easily calculate powers of a matrix because Jordan
blocks are sparse matrices. The next lemma demonstrates this.

Lemma 5.9. Let J ∈ Matd×d(C) be a Jordan block with eigenvalue λ. If |λ| < 1, then the se-
quence (Jn)∞n=0 converges to the zero matrix. If |λ| > 1, then the sequence diverges in Matd×d(C).

Proof. By induction it follows that the nth powers of J are

Jn =


λn

(
n
1

)
λn−1

(
n
2

)
λn−2 . . .

(
n
d−1

)
λn−d+1

λn
(
n
1

)
λn−1 . . .

(
n
d−2

)
λn−d+2

. . .
. . .

...
λn

(
n
1

)
λn−1

0 λn

 .

For every k ∈ {0, . . . , d− 1},(
n

k

)
=

n!

k!(n− k)!
=
n(n− 1) · · · (n− k + 1)

k!
≤ nk

k!
.

Fix a pair (i, j) such that i ≤ j. Set k = j − i, so the (i, j)-entry of Jn has modulus at least as
large as |λ|n−k and at most ∣∣∣∣(nk

)
λn−k

∣∣∣∣ =

(
n

k

)
|λ|n−k ≤ nk |λ|n−k

k!
.

If |λ| < 1, then for fixed k,

lim
n→∞

nk |λ|n−k

k!
= 0. (5.1)

It follows from (5.1) that when |λ| < 1, the sequence (Jn)∞n=0 converges to the zero matrix. On
the other hand, if |λ| > 1, then |λ|n−k → ∞ as n → ∞. Therefore, when |λ| > 1, the modulus
grows without bound, and hence the sequence does not converge since the (i, j)-entry does not
converge in C.

The case that |λ| = 1 is less direct. Observe that the powers of the Jordan block J = (1)
trivially converges to J , but the powers of ( 1 1

0 1 ) does not converge since the (1, 2)-entry grows
without bound.

Theorem 5.10. If A be a square matrix where every eigenvalue λ satisfies |λ| < 1, then

lim
n→∞

An = 0.
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Proof. We begin by applying Theorem 5.5 to get A into Jordan normal form, A = SJS−1. Thus

An =
(
SJS−1

) (
SJS−1

)
· · ·
(
SJS−1

)
= SJnS−1. (5.2)

Then (5.2) implies that
lim
n→∞

An = 0⇐⇒ lim
n→∞

Jn = 0.

Hence, we just consider the asymptotic behavior of J . If

J =

J1 . . . 0
...

. . .
...

0 . . . Jm

 ,

then for n ∈ N,

Jn =

J
n
1 . . . 0
...

. . .
...

0 . . . Jnm

 .

Apply Lemma 5.9 to each Jordan block. Since every eigenvalue of A satisfies |λ| < 1, it follows
that each block converges to the zero matrix. Hence, Jn converges to the zero matrix.

5.3 Stability criteria

Now we use the theory from the previous sections to answer stability questions concerning linear
dynamical systems.

Proposition 5.11. If A ∈ Matd×d(R) such that all eigenvalues λ satisfy |λ| < 1, then x = 0 is
a stable and attracting fixed point of the dynamical system in Rd defined by xn+1 = Axn.

Proof. That x = 0 is an attracting fixed point is a direct consequence of Theorem 5.10: for all
x0 ∈ Rd,

lim
n→∞

xn = lim
n→∞

Anx0 = 0.

Thus, every orbit of x0 converges to 0.
To see that the fixed point is also stable, let ε > 0. By Theorem 5.10, ‖An‖ → 0. Thus, the

sequence (‖An‖) is bounded and

α = max
n∈N
{1, ‖An‖}

is finite. For x ∈ Rd and n ∈ N, Proposition 5.3 implies that ‖Anx‖ ≤ ‖An‖ ‖x‖. Then for
n ∈ N,

‖xn‖ =
∥∥An−1x0

∥∥ ≤ ∥∥An−1
∥∥ ‖x0‖ ≤ α ‖x0‖ ,

so that for all n ∈ N, ‖x0‖ < ε/α =: δ implies that ‖xn‖ < ε.

Theorem 5.12. If A ∈ Matd×d(R) has an eigenvalue λ such that |λ| > 1, then there exists a
vector x ∈ Rd such that

lim
n→∞

‖Anx‖ =∞.

Proof. If λ ∈ R, then there is a real corresponding eigenvector x such that

‖Anx‖ = ‖λnx‖ = |λ|n ‖x‖ .

Since |λ| > 1, as n→∞, ‖Anx‖ → ∞.
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If λ ∈ C, then write λ = α+ iβ with α, β ∈ R, β 6= 0. Then let w = x+ iy be an eigenvector
for λ, where x, y ∈ Rd are linearly independent. For every n ∈ N, Anw = λnw, so λn is an
eigenvalue for An. Writing λ = reiθ, it follows that

λn = rneinθ = rn(cos(nθ) + i sin(nθ)).

Thus,

Anx+ iAny = Anw

= λnw

= rn(cos(nθ) + i sin(nθ))(x+ iy)

= rn(x cos(nθ)− y sin(nθ)) + irn(x sin(nθ) + y cos(nθ)).

Considering the real and imaginary parts separately,

Anx = rn(x cos(nθ)− y sin(nθ)),

Any = rn(x sin(nθ) + y cos(nθ)).

Putting everything together and setting ϕ = nθ,

‖Anx‖2 = 〈rn(x cosϕ− y sinϕ), rn(x cosϕ− y sinϕ)〉
= r2n

(
(cosϕ)2〈x, x〉+ (sinϕ)2〈y, y〉 − 2(cosϕ)(sinϕ)〈x, y〉

)
≥ r2n

(
(cosϕ)2 ‖x‖2 + (sinϕ)2 ‖y‖2 − 2 |cosϕ| |sinϕ| |〈x, y〉|

)
= r2n

(
(|cosϕ| ‖x‖ − |sinϕ| ‖y‖)2 + 2 |cosϕ| |sinϕ| (‖x‖ ‖y‖ − |〈x, y〉|)

)
.

By the Cauchy–Schwarz inequality, ‖x‖ ‖y‖ − |〈x, y〉| > 0. From above and since r = |λ| > 1, it
follows that

lim
n→∞

‖Anx‖ =∞.

This leads directly to the following corollaries.

Corollary 5.13. If A ∈ Matd×d(R) has an eigenvalue λ with |λ| > 1, then x = 0 is an unstable
fixed point of the system xn+1 = Axn.

The next corollary is not as immediate, but we do not prove it here.

Corollary 5.14. Let A ∈ Matd×d(R) such that every eigenvalue λ satisfies |λ| > 1. Then for
all nonzero x ∈ Rd,

lim
n→∞

‖Anx‖ =∞,

and x = 0 is a repelling fixed point of the system xn+1 = Axn.

Remark 5.15. If A ∈ Matd×d(R) such that every eigenvalue λ satisfies |λ| > 1, then 0 is not an
eigenvalue of A, so A is invertible. Since the eigenvalues of A−1 are 1/λ, where λ is an eigenvalue
of A, it follows that that lim

n→∞
A−nx = 0.

Theorem 5.16. If A ∈ Matd×d(R) with no eigenvalues λ such that |λ| ∈ {0, 1}, then there exist
subspaces Vs and Vu of Rd, with dimVs + dimVu = d, satisfying the following.

1. If x ∈ Vs, then lim
n→∞

Anx = 0.

2. If x ∈ Vu, then lim
n→∞

A−nx = 0.
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3. If x /∈ Vs, then lim
n→∞

‖Anx‖ =∞.

The subspace Vs from Theorem 5.16 is called the stable subspace and Vu the unstable
subspace of the system defined by such a matrix A.

Example 5.17. Let A =
(

0 1
−1 5/2

)
, and define xn+1 = Axn. The eigenvalues of A are 1/2 and

2; the corresponding eigenvectors are u =

(
2
1

)
and v =

(
1
2

)
respectively. They form a basis

for R2. Moreover, Vs = 〈u〉 and Vu = 〈v〉.

Example 5.18. Now we look at a few linear dynamical systems that have matrices with λ = 1
as an eigenvalue. We fix a basis (x, y) for R2.

1. In this case there exists an eigenvector x such that Ax = x, so there exists a subspace of
fixed points.

A =

(
1 0
0 1/2

)
Eigenvectors: x, y
Eigenvalues: 1, 1/2

x

y

2. There exists an eigenvector x such that Ax = −x, that is A2x = x. Therefore there exists
a subspace of periodic points of period 2.

A =

(
−1 0
0 1/2

)
,

Eigenvectors: x, y,
Eigenvalues: −1, 1/2.

x

y

3. If ϕ = q · 2π with q ∈ Q then there exists a subspace of periodic points. If q is irrational,
the orbits are dense on the circle.

A =

(
cosϕ − sinϕ
sinϕ cosϕ

)
,

Eigenvectors: −x+ iy, x+ iy,
Eigenvalues: eiϕ, e−iϕ.

x

y

4. Additional example for λ = 1. Here we also have a fixed subspace.

A =

(
1 1
0 1

)
,

Eigenvectors: x,
Eigenvalues: 1,

x

y
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Chapter 6

Non-linear discrete dynamical
systems

In this chapter we briefly consider dynamical systems defined by non-linear functions f : X → X,
where X ∈ Rd, which we may write as

f(x) =


f1(x)
f2(x)

...
fd(x)

 ,

for x = (x1, . . . , xd)
>. We may write functions f : X → X using row vectors, but these should

be interpreted as column vectors. We will use > to mean transpose.
As in the one-dimensional non-linear case (see Theorem 3.5), we can use derivatives of the

function at a fixed point to analyse the behavior of the system around this point. Note that
unadorned norms signify the L2-norm, so ‖·‖ = ‖·‖2, see Section 5.1.

The Jacobian of f at x ∈ X is the (d× d)-matrix

Df(x) =


∂f1
∂x1

(x) . . . ∂f1
∂xd

(x)
...

...
∂fd
∂x1

(x) . . . ∂fd
∂xd

(x)

 .

If x̄ ∈ X is a fixed point of f , then we have f(x̄) = x̄, and expanding f in a Taylor series around
x̄ gives

f(x) = x̄+Df(x̄) · (x− x̄) +O
(
‖x− x̄‖2

)
.

Therefore, for x very close to x̄,

f(x) ≈ x̄+Df(x̄)(x− x̄).

Definition 6.1. Let f : X → X, where X ⊆ Rd, be a C1-function. A fixed point x̄ of f is
called hyperbolic if for all eigenvalues λ of Df(x̄), |λ| 6= 1.

The following theorem is the analog of Theorem 3.5 for d-dimenisonal non-linear systems.

Theorem 6.2. Let f be a C1-function and x̄ ∈ X a fixed point of f . Then

(i) The fixed point x̄ is stable and attracting if |λ| < 1 for all eigenvalues λ of Df(x̄).

(ii) The fixed point x̄ is unstable if there exists an eigenvalue λ of Df(x̄) such that |λ| > 1.

(iii) The fixed point x̄ is unstable and repelling if |λ| > 1 for all eigenvalues λ of Df(x̄).
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Definition 6.3. Let f be a C1-function and x̄ ∈ X a fixed point of f . The fixed point x̄ is
called a saddle point if there exist eigenvalues λ and µ of Df(x̄) such that |λ| < 1 < |µ|.

Definition 6.4. A local stable manifold is a region ωs such that

lim
n→∞

fn(x) = x̄

if x ∈ ωs and a local unstable manifold is a region ωu such that

lim
n→∞

f−n(x) = x̄

if x ∈ ωu. Note that f−n need not be defined globally; local existence is sufficient.

In two dimensions, these manifolds can be seen as curves that go “in to” of “out of” the
fixed point. Compare this with the definition of stable/ unstable sets from Section 2.3. If x̄ is a
saddle point, then there exist local stable and unstable manifolds.

The idea used to visualize these manifolds is to change variables; that is, for subsets U, V ⊆
Rd, find h : U → V , with h(0) = x̄ such that L = h−1 ◦ f ◦ h is a linear map in a (small)
neighborhood of 0.

Example 6.5. Consider the function f : R2 → R2 defined by

f(x, y) =

(
1

2
x, 2y − 15

8
x3

)>
,

with Jacobian

Df(x, y) =

(
1/2 0

−45x2/8 2

)
.

Since f(0) = 0, we see that f has the fixed point x̄ = 0. Moreover, as

Df(0) =

(
1/2 0
0 2

)
,

it follows that x̄ is a saddle point. Since f(0, t) = (0, 2t)>, then

fn(0, t) = (0, 2nt)> , f−n(0, t) =
(
0, 2−nt

)>
.

Thus the y-axis is the unstable manifold. Since

f(t, t3) =

(
t

2
,
t3

8

)>
=

(
t

2
,

(
t

2

)3
)>

,

we see that the curve y = x3 is the stable manifold. See Figure 6.1 for plots of these manifolds.
Now, we define h(x, y) = (x, x3 − y)>, so h2(x, y) = (x, y)>. Therefore, h−1(x, y) = h(x, y).

Define L := h−1 ◦ f ◦ h. Then

L(x, y) = (h−1 ◦ f ◦ h)

(
x
y

)
=

(
x/2
2y

)
= Df(0)

(
x
y

)
.

Remark 6.6. The behaviour of the orbit of a point x in the unstable manifold ωu of a saddle
point x̄ is not fixed. Some typical situations are:

(i) the orbit of x converges to the saddle point x̄—in this case we say that x is homoclinic
or that it has a homoclinic orbit;

(ii) the orbit of x converges to a different saddle point ȳ—in this case we say that x is hete-
roclinic or that it has a heteroclinic orbit;

(iii) the orbit of x converges to a different attractor (not necessarily a fixed point), see Figure 6.2
for an example.
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x

y

Figure 6.1: A few paths from Example 6.5. The red is a unstable manifold, and the blue is the
stable manifold.

x

y

Figure 6.2: Orbits that are neither homoclinic nor heteroclinic.

6.1 An introduction to Lyapunov exponents

An important concept in the study of stability is that of Lyapunov exponents.1 Informally, these
numbers measure how two close, but different, paths diverge, and they can be used to describe
whether or not a system is chaotic. Before we define the Lyapunov number and exponent, we
bring in ideas from linear algebra.

Definition 6.7. Let A be a d× d matrix with eigenvalues λ1, . . . , λd. The spectral radius of
A is the number ρ(A) = maxi |λi|.

We can rephrase earlier results in terms of the spectral radius for cleaner statements. Let
f : X → X be continuously differentiable.

1. A fixed point x̄ ∈ X of f is stable if ρ(Df(x̄)) < 1 and unstable if ρ(Df(x̄)) > 1.

2. A periodic point x̄ ∈ X of period p is stable if ρ(Dfp(x̄)) < 1 and unstable if ρ(Dfp(x̄)) >
1. Thus, x̄ is stable if (ρ(Dfp(x̄)))1/p < 1 and unstable if (ρ(Dfp(x̄)))1/p > 1.

We consider the spectral radius of the n-fold iteration of f . For x0 ∈ X, by the chain rule,

Dfn(x0) = Df(xn−1)Df(xn−2) · · ·Df(x1)Df(x0). (6.1)

If x0 = x̄ is a fixed point of f , then Equation (6.1) becomes Dfn(x̄) = (Df(x̄))n, implying

ρ (Df(x̄)) = (ρ (Dfn(x̄)))1/n . (6.2)

The quantity in Equation (6.2) is the main character in the definition of the Lyapunov number.

1In fact, Lyapunov developed the notion of stability in his PhD thesis in the late 1800s.

https://en.wikipedia.org/wiki/Lyapunov_exponent
https://en.wikipedia.org/wiki/Aleksandr_Lyapunov
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Definition 6.8. Let X ⊆ Rd and f : X → X define a dynamical system via xn = f(xn−1). Let
x0 ∈ X such that ρ(Df(xn)) > 0 for all n ∈ N. We define the Lyapunov number of the orbit
O+(x0) to be, provided the limit exists,

N(x0) = lim
n→∞

(ρ (Dfn(x0)))1/n

and the Lyapunov exponent of O+(x0) to be

Λ(x0) = logN(x0) = lim
n→∞

1

n
log ρ (Dfn(x0)) .

So the discussion prior to the definition of the Lyapunov number shows that if x0 = x̄ is a
fixed point of f , then (6.2) implies

Λ(x̄) = ln ρ (Df(x̄)) .

Similarly, if x0 = x̄ is a periodic point of f of period p, then

Λ(x̄) =
1

p
log ρ (Dfp(x̄)) .

And in one dimension, when X ⊆ R, then ρ
(
Dfn(x0)

)
= |f ′(x0)||f ′(x1)| · · · |f ′(xn−1)|. We can

rewrite this as

Λ(x0) = lim
n→∞

1

n

n−1∑
i=0

log |f ′(xi)|.

The Lyapunov exponent is used to estimate stability in the following way. Let x0 and y0 be
two points close to each other. Using a Taylor expansion to approximate,

xn − yn = fn(x0)− fn(y0) ≈ Dfn(x0)(x0 − y0).

Now we use the Lyapunov exponent Λ(x0) to estimate Dfn(x0):

‖xn − yn‖ ≈ eΛ(x0)n ‖x0 − y0‖ ,

so we can split the analysis into two cases based on the sign of Λ(x0).

� If Λ(x0) > 0, then eΛ(x0)n grows and the orbits separate (indicating instability).

� If Λ(x0) < 0, then eΛ(x0)n decays and the orbits get closer (indicating stability).

As we have seen in our examples, nearby orbits diverge from each other when being repelled,
and nearby orbits get closer when being attracted. Importantly, separation can be an indicator
of chaotic behavior, and so when Λ(x0) > 0 one may consider the system to be chaotic.

Example 6.9. Consider the logistic map with a = 4, so f(x) = 4x(1− x). Let x0 = 1/4. Then

x1 = f(x0) = f(1/4) = 3/4,

x2 = f(x1) = f(3/4) = 3/4.

Thus, the orbit is eventually fixed O+(1/4) = (1/4, 3/4, 3/4, . . . ).

Now we consider the Lyapunov number at x = 1/4. Since f ′(x) = 4− 8x,

|f ′(1/4)| = 2 = |f ′(3/4)|.
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Thus, |f ′(xn)| = 2 for all n ∈ N. Then

Λ(x0) = lim
n→∞

1

n

n−1∑
i=0

log |f ′(xi)|

= lim
n→∞

1

n

n−1∑
i=0

log(2)

= log(2) > 0.

Because Λ(1/4) > 0, orbits starting close to x = 1/4 will diverge from one another. (Consider
trying this for yourself.) We know from Theorem 3.5, the fixed point x = 3/4 is indeed unstable,
so this description of the Lyapunov number matches with our understanding so far.

We can also calculate the Lyapunov exponent of the fixed point x = 0, which is Λ(0) =
log(4) > 0. Again, this indicates instability, and again from Theorem 3.5, we know that x = 0
is unstable. Notice that 0 < Λ(1/4) < Λ(0); might be be some way to interpret this? �

For fixed points, we do not need to calculate the Lyapunov exponent as this will simply
repeat the information that we have from the derivative. That is, if x is a fixed point such
that |f ′(x)| < 1, then the fixed point is stable, and correspondingly, Λ(x) = log |f ′(x)| < 0.
If x is a fixed point such that |f ′(x)| > 1, then we know that the fixed point is unstable, and
correspondingly, Λ(x) = ln |f ′(x)| > 0. However, in higher-dimensional systems, this becomes
much more useful.

6.2 Some remarks on chaotic behavior

Definition 6.10. Let f : X → X be a function. The orbit O+(x) of a point x ∈ X is stable if
for all ε > 0, there exists a δ > 0 such that ‖x− y‖ < δ implies that for all n ∈ N,

‖fn(x)− fn(y)‖ < ε.

The orbit is called unstable if it is not stable.

Note that the x in the above definition need not be a periodic point, however if it is, this
definition coincides with Definition 2.27. If there exists Y ⊂ X such that f(Y ) ⊆ Y , then the
orbit of x ∈ Y can be stable with respect to Y assuming the orbit satisfies the above definition
when y ∈ Y and ‖x− y‖ < δ. Similarly, the orbit may be unstable with respect to Y . Note that
a stable orbit is stable with respect to all Y ⊆ X, and an orbit that is unstable with respect to
some Y ⊆ X is unstable.

Example 6.11. Consider the logistic map with parameter a = 1: that is, f(x) = x(1−x). The
orbit O+(0) is unstable as for all y < 0,

lim
n→∞

fn(y) = −∞.

However, the orbit of y ∈ [0, 1] is stable with respect to Y = [0, 1]. To see this, let ε > 0, and
choose δ = ε. Then for y ∈ Y with y < δ,

|f(0)− f(y)| = |f(y)| = |y||1− y| ≤ |y| < ε.

Definition 6.12. Let f : X → X. We say that f has sensitive dependence if there exists
an ε > 0 such that for any x ∈ X and any δ > 0, there exists y ∈ X and n ∈ N such that
‖x− y‖ < δ and

‖fn(x)− fn(y)‖ ≥ ε.
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We could refine the above definition to consider Y ⊆ X. Assuming f(Y ) ⊆ Y , then f has
sensitive dependence on initial conditions relative to Y if every orbit starting in Y is unstable
with respect to Y . Informally, this is the same as points that start close together in Y have
large differences in orbit behavior.

Example 6.13. The logistic map with parameter a = 4, f(x) = 4x(1 − x), has sensitive
dependence on initial conditions in [0, 1]. See Figure 6.3 for an example.

x

y

Figure 6.3: A demonstration of the chaotic nature of the logistic map for a = 4. Two paths are
mapped: the purple starts at x0 = 0.65 and the green starts at x0 = 0.7.

Definition 6.14. Let f : X → X. We say that f is topologically mixing if for every pair
of non-empty open sets U, V ⊆ X are non-empty, there exists N ∈ N such that for all n > N ,
fn(U) has non-empty intersection with fn(V ).

A consequence of topological mixing is that every pair of non-empty open sets, no matter
how small or fall apart, eventually always overlap by iteration of f . In other words, every
non-empty open set has an orbit that intersects every open set of X.

Example 6.15. The logistic map with parameter a = 4, f(x) = 4x(1 − x), is topologically
mixing on [0, 1]. See Figure 6.4 for an example.

x

y

Figure 6.4: A demonstration of the topological mixing property of the logistic map for a = 4.
Here, the open set is (0.3, 0.4), and we plot 20 iterations of eight paths. We color points in the
orbit on the x-axis in blue.

Recall that a set Y ⊆ X is dense in X if for every ε > 0 and every x ∈ X, every ball Bε(x)
contains elements of Y .

Example 6.16. Consider the logistic map with parameter a = 4, f(x) = 4x(1 − x). Recall
from the example in Section 1.1.3, that for ϕ0 ∈ R and x0 = (sin(ϕ0))2, we have xn = fn(x0) =
(sin(2nϕ0))2. If s ∈ R \Q, then the orbit of x0 := (sin(2πs))2 is dense in [0, 1]. Further, the set
of all points x ∈ [0, 1] whose orbits under f are periodic is dense in [0, 1].
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Definition 6.17. Let f : X → X. We say that f is chaotic if

1. f is topologically mixing and

2. the periodic points of f are dense in X.

Since the logistic map f with a = 4 is both topologically mixing on [0, 1] and has dense
periodic points in [0, 1], it follows that f is chaotic on [0, 1].

The two conditions of Definition 6.17 imply that the map f is sensitive to initial conditions—
a quality that we intuitively associate with chaotic behavior. However, a map that is sensitive
to initial conditions need not be chaotic. If we do not have both conditions of Definition 6.17
satisfied, then chaotic behavior need not be present.
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Chapter 7

Ordinary differential equations and
flows

We now turn to the study of continuous dynamical systems, and thus to differential equations.
In this chapter, we cover some basic aspects of ordinary differential equations (ODEs).

In its simplest form, an ODE is an equation involving the derivative of a single-variable
function, the function itself, and the variable on which it depends. If x is a differentiable
function of t and t ∈ R, then a first order ODE has the form

x′(t) = f(t, x). (7.1)

Such an equation defines a continuous dynamical system, where x(t) is the state of the system
at time t. If the function f in (7.1) is independent of the time t, then the system is called au-
tonomous and can be written as x′ = g(x). Otherwise, the system is called non-autonomous.

By allowing higher order derivatives, we form higher order ODEs; an ODE of order n has
the form

x(n) = f
(
t, x, x′, x′′, . . . , x(n−1)

)
. (7.2)

A system of ODEs consists of two or more inter-connected ODEs. For example, if x =
(x1, . . . , xd), where each xi depends only on t, then

x
(n)
1

x
(n)
2
...

x
(n)
d

 =


f1

(
t,x,x′, . . . ,x(n−1)

)
f2

(
t,x,x′, . . . ,x(n−1)

)
...

fd
(
t,x,x′, . . . ,x(n−1)

)
 . (7.3)

With vector-valued functions, we can rewrite the system in (7.3) as

x(n) = F
(
t,x,x′, . . . ,x(n−1)

)
.

A higher order ODE may be transformed into a system of first order ODEs as follows. Given an
ODE of order n as in (7.2), we set x1 := x, x2 := x′, . . ., and xn := x(n−1). Then Equation (7.2)
becomes 

x′1
x′2
...

x′n−1

x′n

 =


x2

x3
...
xn

f(t, x1, x2, . . . , xn)

 .

Thus, it suffices to study systems of first order ODEs. Note that in general, a system of first
order ODEs may also be written as

x(t) = f(t, x),

65
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where x : R→ Rd and f : R× Rd → Rd (we denoted this above with bold).

Example 7.1. Consider the second order ODE:

x′′ =
3

t
x′ − 4

t2
x+ t.

By introducing the variables x1 = x and x2 = x′, we transform the equation into the system

x′1 = x2

x′2 = t− 4

t2
x1 +

3

t
x2.

Given a first order system, we may be able to solve it, or at least determine whether or not a
solution exists. We are interested in whether or not the solution x(t) for a given initial condition
x(t0) = x0 is unique, and how the solution changes as we vary the initial condition (that is, how
the orbit varies as we vary the initial state).

We recall a couple of elementary methods of solving differential equations.

Example 7.2. (Separation of variables) Consider the differential equation given by

x′ = −x2et. (7.4)

Since the ODE in (7.4) can be written in the form x′ = p(x)q(t), it is separable. When x 6= 0,
Equation (7.4) can be rewritten as

− 1

x2
x′ = et.

Integrating both sides with respect to t and solving for x yields

x =
1

et + C
.�

We complete the analysis by also considering the case x = 0; this gives the solution x = 0. �

Example 7.3. (Integrating factor) Consider the initial value problem (IVP)x′ = −
1

t
x+ sin t (for t > 0),

x(π) = 1.
(7.5)

The ODE in (7.5) is not separable, but since it can be written in the form x′ + p(t)x = q(t),
means it may be solved by multiplying by an integrating factor of the form eI(t), where

I(t) =

∫
p(t) dt.

In this case, elog |t| = t. Multiplying both sides of the equation by the integrating factor yields

tx′ + x = t sin t

(tx)′ = t sin t.

By integrating both sides with respect to t, we obtain tx = −t cos t+ sin t+C. Thus the general
solution is

x = − cos t+
sin t

t
+
C

t
,

and the specific solution to our initial value problem is

x = − cos t+
sin t

t

as x(π) = 1 implies that C = 0. �
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7.1 Existence and uniqueness of solutions

We now turn to the central question(s) of whether a system has a solution and if so, whether it
is unique or not. Before moving on, we pause to describe why we care so much about this.

Suppose we have a system we are trying to understand. We develop a (mathematical) model
to help us understand it and predict its behavior. Regardless of our ability to find a solution
to our model, one exists in reality, so we want to understand what conditions on our models
guarantee that a solution will exist. Once we know solutions exist, we want to make sure we
have the correct one that will actually model the system we care about. If we can guarantee
that solutions are unique, then we do not have to worry about guessing. Any solution we find
will be correct by uniqueness.

Example 7.4. Consider the IVP {
x′ = 3x2/3

x(0) = 0.
(7.6)

The IVP in (7.6) is separable, and the solution is x(t) = t3. However, we have implicitly used
that x 6= 0. Consider, for α ≥ 0,

xα(t) =


(t+ α)3 when t < −α,
0 when − α ≤ t ≤ α,
(t− α)3 when α < t.

A quick check verifies that xα is a solution to the IVP (7.6) for all α ≥ 0. See Figure 7.1 for
sample plots. The problem has therefore infinitely many solutions. (Now the question is which
solution accurately models the system?)

t

x

1 2

−1−2

x0 x1 x2

x0x1x2

Figure 7.1: Three functions xα(t) from Example 7.4 are graphed (in red, blue, and purple).

Definition 7.5. A function f : R × Rd → Rd is said to satisfy the Lipschitz condition on a
set Ω ⊆ R× Rd if there is a constant L > 0 such that for all (t, x), (t, y) ∈ Ω

‖f(t, x)− f(t, y)‖ ≤ L ‖x− y‖ .

The function f is also sometimes referred to as Lipschitz continuous on Ω if it satisfies the
Lipschitz condition on Ω.



68 CHAPTER 7. ORDINARY DIFFERENTIAL EQUATIONS AND FLOWS

Example 7.6. Consider the function f : R × R → R given by f(t, x) = t2x2. Since for all
x, y, t ∈ R such that x, y, t ∈ B1(0),

|f(t, x)− f(t, y)| = |t2(x2 − y2)|
≤ |(x− y)(x+ y)|
≤ (|x|+ |y|)|x− y|
≤ 2|x− y|,

it follows that on
Ω = {(t, x) : |t| ≤ 1 and |x| ≤ 1}

the function f satisfies the Lipschitz condition. �

We can think of a function f : R×R→ R as a one-dimensional function by writing f(t, x) =:
ft(x). Then a one-dimensional function that is differentiable and has bounded derivative will
always satisfy the Lipschitz condition. This follows from the MVT in fact as |f(x) − f(y)| =
|f ′(ξ)||x − y|. However, the reverse implication does not hold, and this is shown in the next
example.

Example 7.7. Consider the function f : R× R→ R given by f(t, x) = |x|. For all x, y, t ∈ R,

|f(t, x)− f(t, y)| = ||x| − |y|| ≤ |x− y| ,

so the function fulfils a Lipschitz condition on R × R. But it is not differentiable on any set
containing the line x = 0. �

All functions f(t, x) that satisfy the Lipschitz condition are continuous in the x variable.
The reverse implication, however, is not true.

Example 7.8. Consider the function f : R × R → R via f(t, x) = 3x2/3, which is continuous
everywhere. Let Ω ⊆ R× R be a neighborhood of 0. Then for y = 0 and (t, x) ∈ Ω,

|f(x)− f(y)| =
∣∣∣3x2/3 − 0

∣∣∣ = 3
∣∣∣x2/3

∣∣∣ = 3
∣∣∣x−1/3

∣∣∣ |x− 0| ,

and |x−1/3| is not bounded close to x = 0. Thus f does not satisfy the Lipschitz condition on
any neighborhood of x = 0. �

If an IVP is defined by a function satisfying the Lipschitz condition on a bounded set, then
the IVP possesses a unique solution on some interval. The next theorem is attributed to Cauchy,
Lindelöf, Lipschitz, and Picard.1

Theorem 7.9 (Existence and uniqueness). Suppose that the function f : R × Rd → Rd is
continuous and the {

x′(t) = f(t, x(t)),

x(t0) = x0

(7.7)

defines an IVP. If there exists a, b ∈ R such that f satisfies the Lipschitz condition on

Ω = {(t, x) ∈ R× Rd : |t− t0| ≤ a, ‖x− x0‖ ≤ b},

then there exists c > 0 such that the IVP in (7.7) has a unique solution for all t in the interval

Ic := {t ∈ R : |t− t0| ≤ c}.
1https://en.wikipedia.org/wiki/Picard-Lindelöf theorem

https://en.wikipedia.org/wiki/Picard%E2%80%93Lindel%C3%B6f_theorem
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Note that Theorem 7.9 tells us nothing about the size of the interval on which a unique
solution exists.

Example 7.10. Consider the IVP given by{
x′(t) = tx2,

x(0) = 1.

The function f(t, x) = tx2 satisfies the Lipschitz condition on any bounded set, for example in
Ω = [−2, 2] × [−1, 1], so using the variables in Theorem 7.9, t0 = x0 = 0, a = 2, and b = 1.
Separating the variables and applying the initial condition, a solution for the IVP is given by

x(t) =
2

2− t2
.

This solution does not exist for all values of t, but it is valid for all t ∈ (−
√

2,
√

2), which contains
the interval guaranteed by Theorem 7.9. �

The following is a useful corollary to Theorem 7.9.

Corollary 7.11. If f : R×Rd → Rd is Lipschitz continuous on R×Rd, then for every t0 ∈ R,
the IVP {

x′(t) = f(t, x(t)),

x(t0) = x0

has a unique solution for all x0 ∈ Rd.

7.2 Fixed points and autonomous systems

As in the discrete case, the set of fixed points of a continuous dynamical system are important
to understanding the long-term behavior of the system.

Definition 7.12. Let f : Rd → Rd and x′ = f(x) define an autonomous dynamical system. A
point x̄ ∈ Rd such that f(x̄) = 0 is called a fixed point of the system.

Notice the difference between the discrete case compared with the continuous case. In the
discrete case, we are iterating the function: the system xn+1 = f(xn) has a fixed point at x̄ if
f(x̄) = x̄. On the other hand in the continuous case, the function is defining the derivative (the
change in x with respect to t). Since fixed points do not change with time, the (time) derivative
is 0—that is, f(x̄) = 0.

As in the discrete case, if a dynamical system (in R) is defined by a continuous function,
then the limit of a convergent orbit must be a fixed point of the system.

Proposition 7.13. Suppose f : R→ R is a continuous function and x′ = f(x) is an autonomous
dynamical system with orbit x(t). If there exists x̄ ∈ R such that

lim
t→∞

x(t) = x̄,

then x̄ is a fixed point of the system.

Proof. Since f is continuous and x(t) is an orbit,

lim
t→∞

x′(t) = lim
t→∞

f(x(t)) = f(x̄). (7.8)

We show that if f(x̄) = C, then C = 0, so that x̄ is a fixed point.
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Suppose, via contradiction, that C > 0. Then from (7.8), there exists a ∈ R such that for
all t > a, x′(t) > C/2. By the Mean Value Theorem, for all t > a that

x(t)− x(a) ≥ C

2
(t− a),

which implies

x(t) ≥ x(a) +
C

2
(t− a). (7.9)

Since a and C are constants, the right side of (7.9) grows arbitrarily large as t → ∞. This
contradicts the fact that the limit exists, so that C ≤ 0. A similar argument applies in the case
when C < 0. Therefore, C = 0, so x̄ is a fixed point.

Proposition 7.14. Let f : Rd → Rd be Lipschitz continuous on Rd, and let x̄ be a fixed point
of the dynamical system x′ = f(x). If an orbit x(t) of the system contains the state x̄, then the
orbit is constant.

Proof. Let x(t) be an orbit of the system passing through x̄. Since x(t) is an orbit, it is a solution
of the system. Thus, by definition for all t and for some t̄,{

x′(t) = f(x(t)),

x(t̄) = x̄.

Define a constant function x̃ : R→ Rd by x̃(t) := x̄ for all t ∈ R. Then for all t ∈ R,

x̃′(t) = 0 = f(x̄) = f(x̃(t))

and x̃(t̄) = x̄. Thus, x̃(t) is also a solution of the IVP. Because f is Lipschitz continuous,
Theorem 7.9 implies that the solution is unique. Hence, for all t ∈ R,

x(t) = x̃(t) = x̄.

The Lipschitz property imposes constraints we can see in the system. Proposition 7.14
ensures that Lipschitz continuous functions cannot have orbits that eventually hit fixed points;
either the orbit is fixed or it is not. This is not the only constraint imposed by Lipschitz
continuity; we can quickly prove some another property in the one-dimensional case.

Proposition 7.15. If f : R → R is Lipschitz continuous on R, then every orbit of the system
defined by x′ = f(x) is either constant or strictly monotone.

Proof. Let x(t) be an orbit of the system. If x(t) is not monotone, then there exists a t0 such
that

0 = x′(t0) = f(x(t0)). (7.10)

Equation (7.10) implies that the orbit contains a fixed point. Since f is Lipschitz continuous,
by Proposition 7.14, the orbit is constant.

7.3 Flows

Flows provide a geometric interpretation through which we can study continuous dynamical
systems.

Example 7.16. First consider the system given by

x′ = sinx. (7.11)
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The family of solutions to this is

t = log

∣∣∣∣cscx0 + cotx0

cscx+ cotx

∣∣∣∣ . (7.12)

Suppose we want to understand how the system behaves with a given initial condition x0 as
t→∞. The exact solutions given in (7.12) are challenging to analyze for arbitrary x0 (even for
particularly “nice” choices this is hard). Instead, the ODE in (7.11) is simple to graph. If we
interpret t as time, x as the position of a particle on R, and x′ as velocity of that particle, then
x′ = sinx represents a vector field. Vectors point to the right when x′ > 0 and to the left when
x′ < 0. This is plotted in Figure 7.2. �

x

x′

Figure 7.2: A plot of flows (in blue) on the real line from Example 7.16.

The plot in Figure 7.2 illustrates which fixed points should be considered stable and which
should be unstable. This is one of the main benefits of flows, but before defining anything, we
pick up with another example.

Example 7.17. For some fixed x0 ∈ R, consider the initial value problem{
x′ = x,

x(0) = x0.

The IVP has solution given by x(t) = x0e
t. Now define a function Φ : R× R→ R by

Φ(t, x0) := x0e
t,

for (t, x0) ∈ R× R. The function Φ is continuous and satisfies

(i) for all x0 ∈ R,
Φ(0, x0) = x0e

0 = x0,

(ii) for all x0, s, t ∈ R,

Φ(s+ t, x0) = x0e
s+t = x0e

set = Φ(t, x0)es = Φ(s,Φ(t, x0)).

This function Φ is an example of a global flow. We may drop the subscript from x0 in the
notation Φ(t, x0) as becomes more cumbersome, but the second parameter should be interpreted
as the initial condition.

Definition 7.18. Let M ⊆ Rd. A continuous map Φ : R×M →M is called a flow if

(i) Φ(0, x) = x for all x ∈M ,

(ii) Φ(s+ t, x) = Φ(s,Φ(t, x)) for all s, t ∈ R and x ∈M .

Given an autonomous dynamical system defined by a Lipschitz function, we can use the
solution to define a flow, as we did in Example 7.17. For an initial state x of the system, the
flow Φ(t, x) gives the state of the system at time t. The following definition of orbit for a flow
agrees with our earlier definition for dynamical systems.



72 CHAPTER 7. ORDINARY DIFFERENTIAL EQUATIONS AND FLOWS

Definition 7.19. Let M ⊆ Rd and Φ : R×M →M be a flow. For x0 ∈M ,

(i) x(t) = Φ(t, x0) is called the orbit through x0.

(ii) The set T (x0) = TΦ(x0) = {Φ(t, x0) : t ∈ R} is called the trajectory through x0.

The trajectory through a given point x0 is the set of states taken by the system when starting
at x0. The orbit through x0 is the function that describes the trajectory. Using the flows from
Example 7.17, the orbit through 2 is the function x(t) = 2et, and the trajectory is T (2) = (0,∞).

Definition 7.20. Let M ⊆ Rd and Φ : R×M →M be a flow.

(i) A point x̄ ∈M is a fixed point of the flow if Φ(t, x̄) = x̄ for all t ∈ R.

(ii) A point x̄ ∈M is a periodic point if there is a t̄ > 0 such that Φ(t̄, x̄) = x̄. The smallest
such t̄ > 0 is the period of x̄;

We verify that this definition of fixed points matches previous one in Section 7.2. If x̄ ∈ R
is a fixed point, then

dΦ

dt
(t, x̄) =

dx̄

dt
= 0.

Therefore, this matches the definitions where f(x̄) = 0 when x′ = f(x). The trajectory of x̄ is
exactly what we expect: T (x̄) = {x̄}. On the other hand, if x̄ is a periodic point, then there
exists t̄ > 0 such that Φ(t̄, x̄) = x̄. From the properties satisfied by all flows: for all n ∈ Z,

Φ(t̄, x̄) = Φ(nt̄, x̄).

Like in the discrete case, the orbit of x̄ is also said to be periodic.

Definition 7.21. Let M ⊆ Rd and Φ : R×M →M be a flow. Assume that x̄ ∈M be a fixed
point.

(i) The point x̄ is a Lyapunov stable fixed point if for every ε > 0 there exists a δ > 0 such
that ‖x̄− y‖ < δ implies that for all t > 0,

‖Φ(t, x̄)− Φ(t, y)‖ < ε.

(ii) The point x̄ is asymptotically stable if x̄ is stable and there exists δ > 0 such that
‖x̄− y‖ < δ implies

lim
t→∞

Φ(t, y) = x̄.

Example 7.22. (Asymptotically stable fixed point) Fix x0 ∈ R, and consider the IVP{
x′ = −x,
x(0) = x0.

This example is similar to Example 7.17, so this IVP has the solution

x(t) = x0e
−t = Φ(t, x0).

The point x0 = 0 is a fixed point of the system since dΦ
dt (t, 0) = 0. Thus, for y ∈ R and t ≥ 0,

|Φ(t, 0)− Φ(t, y)| = |0e−t − ye−t| = e−t|0− y| = e−t|y| ≤ e0|y| = |y|.

Thus, for every ε > 0, choose δ = ε so that |y| = |0− y| < δ implies that

|Φ(t, 0)− Φ(t, y)| ≤ |y| < δ = ε.

Thus the fixed point x = 0 is Lyapunov stable. Further, for any y, we have that Φ(t, y) =
ye−t → 0 as t→∞, so the fixed point x = 0 is asymptotically stable. �



Chapter 8

Linear ODEs of higher dimension

A linear ODE in Rd may be written in the form x′(t) = Ax(t), where A = (aij) is a d×d matrix
with entries in R and x(t) = (x1(t), . . . , xd(t))

>. With this, the system

x′1 = a11x1 + · · · + a1nxn,
...

x′n = an1x1 + · · · + annxn,

can be expressed as x′ = Ax. If this were a 1-dimensional system, say A =
(
a
)
, then we could

write the solution as the exponential function x(t) = Ceat.

8.1 Matrix exponentials

This is not unique to 1-dimensional systems; the idea is to “exponentiate” a matrix: eA. So what
does this mean? Recall the Taylor series of the (real-valued) exponential function f(x) = ex

ex =

∞∑
m=0

1

m!
xm. (8.1)

The right side of (8.1) is a power series, which converges everywhere (i.e., it converges for all
x ∈ R). Although we cannot exponentiate a matrix, per se, we can consider a power series (and
its convergence properties) evaluated at matrix.

Definition 8.1. For A ∈ Matd×d(R), the exponential of A is the d×d matrix, denoted by eA,

eA =
∞∑
m=0

Am

m!
. (8.2)

We furthermore define A0 = I for all A ∈ Matd×d(R), and when A = 0 is the zero matrix, we
set eA = Id.

An important issue concerns the convergence of (8.2). It is not immediately clear that the
limit of the partial sums of the matrices converges to a matrix. Using the convergence analysis
of the Taylor series (8.1) and a property of the matrix norm, one can show that the sum in (8.2)
converges for all matrices A ∈ Matd×d(R). The property that does this is the submultiplicativity
property. For A,B ∈ Matd×d(R), ‖AB‖ ≤ ‖A‖ ‖B‖, and hence for n ∈ N, ‖An‖ ≤ ‖A‖n.1 If
(eA)ij is the (i, j) entry of the matrix eA, then

|(eA)ij | ≤
∞∑
m=0

∣∣∣∣(Am)ij
m!

∣∣∣∣ ≤ ∞∑
m=0

1

m!
‖Am‖ ≤

∞∑
m=0

1

m!
‖A‖m,

which is finite by the convergence of the power series in 8.1.

1Not every matrix norm has this property.
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https://en.wikipedia.org/wiki/Matrix_norm
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Example 8.2. If A is a diagonal matrix, then its exponential is easy to calculate. For

A =


a11 0 . . . 0
0 a22 . . . 0
...

...
. . .

...
0 0 . . . add

 ,

the mth power is

A =


am11 0 . . . 0
0 am22 . . . 0
...

...
. . .

...
0 0 . . . amdd

 .

Thus, its exponential is

eA =

∞∑
m=0

Am

m!

=
∞∑
m=0

1

m!


am11 0 . . . 0
0 am22 . . . 0
...

...
. . .

...
0 0 . . . amdd



=



∞∑
m=0

am11

m!
0 . . . 0

...
...

. . .
...

0 0 . . .
∞∑
m=0

amdd
m!



=


ea11 0 . . . 0

0 ea22 . . . 0
...

...
. . .

...
0 0 . . . eadd

 .

Therefore, the exponential of a diagonal matrix is the diagonal matrix of the exponentials of
each of the diagonal entries. �

Matrices A,B ∈ Matd×d(R) are said to commute if AB = BA.

Proposition 8.3. Suppose A,B, S ∈ Matd×d(R) where S is invertible. If A and B are com-
muting, then

1. eA+B = eAeB,

2. (eA)−1 = e−A,

3. (eA)m = emA for m ∈ Z,

4. eS
−1AS = S−1eAS.

Like with vectors, we consider matrices with entries that are functions of some parameter t.
For example, x(t) = (sin t,

√
t)> and

A(t) =

(
t t2

1 sin t

)
.
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Therefore, we can differentiate with respect to t entry-wise:

dA

dt
=

(
1 2t
0 cos t

)
.

Proposition 8.4. For A ∈ Matd×d(R),

d

dt
etA = AetA.

Proof. By the definition of the exponential matrix,

d

dt
etA =

d

dt

∞∑
m=0

(tA)m

m!
(def. of exponential)

=

∞∑
m=1

mtm−1Am

m!
(chain rule)

= A
∞∑
m=1

tm−1Am−1

(m− 1)!
(rearranging)

= AetA. (def. of exponential)

Proposition 8.4 allows us to express solutions of linear differential equations in terms of
matrix exponentials. However, before we see exactly how this works, we first look at more
techniques that will help us calculate eA for a general matrix A.

Definition 8.5. A matrix A ∈ Matd×d(R) is said to be diagonalizable if there is an invertible
matrix S and a diagonal matrix D such that S−1AS = D.

Not all matrices are diagonalizable over the reals or complex numbers. For example, the two
matrices (

1 1
0 1

)
,

(
0 1
−1 0

)
are not diagonalizable over R. Over C, the right matrix is diagonalizable. In particular, a d× d
matrix with d distinct eigenvalues is diagonalizable.

Proposition 8.6. A matrix A ∈ Matd×d(R) is diagonalizable if and only if A has d linearly
independent eigenvectors, {v1, v2, . . . , vd}. In this case, the matrix S with columns v1, v2, . . . , vd
and the diagonal matrix D with diagonal entries given by corresponding eigenvalues λ1, λ2, . . . , λd
satisfy S−1AS = D.

Now we see how Proposition 8.6 can help us compute matrix exponentials. Suppose A is
diagonalizable. Then by Proposition 8.6, there exists an invertible matrix S, whose columns
are eigenvectors of A, such that S−1AS = D for some diagonal matrix D. This implies that
A = SDS−1. Therefore,

eA = eSDS
−1

(diagonalizable)

= SeDS−1 (Proposition 8.3)

= S

e
D11

. . .

eDdd

S−1. (diagonal exponential)
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Example 8.7. Let

A =

−4 6 −3
0 2 0
6 −6 5

 .

The eigenvalues of A are −1, 2 and 2, with corresponding eigenvectors−1
0
1

 ,

1
1
0

 ,

0
1
2

 .

To diagonalize A, we set

S =

−1 1 0
0 1 1
1 0 2

 ,

so that

S−1 =

−2 2 −1
−1 2 −1
1 −1 1

 .

Here, D = diag(−1, 2, 2). Now we can compute the exponential of A:

eA = SeDS−1

=

−1 1 0
0 1 1
1 0 2

e−1 0 0
0 e2 0
0 0 e2

−2 2 −1
−1 2 −1
1 −1 1


=

 2e−1 − e2 −2e−1 + 2e2 e−1 − e2

0 e2 0
−2e−1 + 2e2 2e−1 − 2e2 −e−1 + 2e2


≈

−6.65 14.04 −7.02
0.00 7.39 0.00
14.04 −14.04 14.41

 . �

There is a family of matrices, different from diagonal matrices, where computing the (ma-
trix) exponential involves only finite sums. These are matrices where the sequence (Am)∞m=0

eventually stabilizes at the zero matrix.

Definition 8.8. A matrix A ∈ Matd×d(R) is said to be nilpotent if there exists n ∈ N such
that An is the zero matrix.

We will denote the zero matrix by 0, so the context should make it clear. If An = 0, then
Ak = 0 for all k ≥ n, since

Ak = AnAk−n = 0Ak−n = 0.

And as described above, if A is nilpotent, then the sum in the definition of eA is finite. That is,
if An = 0, then

eA =

∞∑
m=0

Am

m!
=

n−1∑
m=0

Am

m!
.

Example 8.9. Let

A =

1 1 4
0 1 1
0 0 1

 .
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We can rewrite A as a sum of two matrices in the following way

A = I +N =

1 0 0
0 1 0
0 0 1

+

0 1 4
0 0 1
0 0 0

 .

The matrix N is nilpotent since N3 = 0. Thus, since eI = eI,

eA = eI+N = eIeN = eI

(
I +N +

1

2
N2

)
= e

(
A+

1

2
N2

)

= e

1 1 4
0 1 1
0 0 1

+

0 0 1/2
0 0 0
0 0 0


= e

1 1 9/2
0 1 1
0 0 1

 . �

8.2 Characteristic polynomials

Recall that the characteristic polynomial pA of a matrix A is given by

pA(λ) = det(λI −A).

If A ∈ Matd×d(R), then pA is a polynomial of degree d, and the eigenvalues of A are the values
of λ that satisfy the equation pA(λ) = 0. The equation pA(λ) = 0 is sometimes called the
characteristic equation of A. In general, the characteristic equation has the form, for ci ∈ R,

λd + cd−1λ
d−1 + · · ·+ c1λ+ c0 = 0.

As we know how to take powers, scalar multiples, and sums of matrices, we can also easily
form polynomials of matrices. Note that the constant term of a polynomial p(λ) can be written
as c0λ

0, so the corresponding term of a matrix polynomial p(A) is c0A
0 = c0I. In particular, we

can evaluate the characteristic polynomial pA(λ) of a matrix A at A.

Example 8.10. The characteristic polynomial of the matrix A from Example 8.9 is

pA(λ) = det(λI −A) =

∣∣∣∣∣∣
λ− 1 −1 −4

0 λ− 1 −1
0 0 λ− 1

∣∣∣∣∣∣ = (λ− 1)3.

Plugging the matrix A into its own characteristic polynomial gives

pA(A) = (A− I)3 = N3 = 0. �

This result from Example 8.10 not just a coincidence; it is the result of an important theorem
in linear algebra.2

Theorem 8.11 (Cayley–Hamilton Theorem). If A ∈ Matd×d(C), then pA(A) = 0.

Note that if A is a real square matrix, then by default it is also a complex matrix and
satisfies the hypothesis of the Cayley–Hamilton Theorem. We will not immediately see how to
apply the Cayley–Hamilton Theorem to our situation, but we will soon. Because eigenvalues
of real-valued matrices can be complex, we need to discuss some properties of complex-valued
functions.

2See the page on the Cayley–Hamilton Theorem and its applications.

https://en.wikipedia.org/wiki/Cayley-Hamilton_theorem
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Definition 8.12. An entire function f : C → C is a function that can be expressed as a
power series with an infinite radius of convergence. That is, there exists a complex sequence
(ak)

∞
k=0 such that for all z ∈ C,

f(z) =

∞∑
k=0

akz
k.

It follows that f(z) = ez is an entire function, where ak = 1/k!. The following proposi-
tion, which is reminiscent of the Euclidean algorithm, will allow us to calculate exponentials of
matrices using polynomials.

Proposition 8.13. Let f be an entire function, and let p be a polynomial of degree n. Then
there exists an entire function g and a polynomial q of degree ≤ n− 1 such that

f(z) = g(z)p(z) + q(z).

Proof. We prove this by induction on the degree n of q. For the base case n = 1, suppose
p(z) = z − c. If c = 0, then we are done since

f(z) =

∞∑
k=0

akz
k =

( ∞∑
k=1

akz
k−1

)
z + a0 =

( ∞∑
k=0

ak+1z
k

)
z + a0.

If c 6= 0, then we need to prove that there exists an entire function g and a constant q0 such
that f(z) = g(z)(z − c) + q0. Setting w = z − c, this becomes

f(w + c) = g(w + c)w + q0.

This follows directly from the case when c = 0 since f(w + c) and g(w + c) are both entire
functions. This proves the base case.

For induction step, assume the proposition holds for polynomials of degree ≤ n− 1. Let p1

be a polynomial of degree n− 1, and for some c ∈ C, let p(z) = (z− c)p1(z) for all z ∈ C. Thus,
p is a polynomial of degree n. By the induction assumption, there exists g1 and q1 such that

f(z) = g1(z)p1(z) + q1(z)

where q1 is a polynomial of degree ≤ n − 2. Furthermore, as g1 is an entire function, we can
write g1(z) = g(z)(z − c) + q0, where q0 is a constant. Therefore,

f(z) = g1(z)p1(z) + q1(z)

= (g(z)(z − c) + q0) p1(z) + q1(z)

= g(z)(z − c)p1(z) + q0p1(z) + q1(z)

= g(z)p(z) + q0p1(z) + q1(z).

Now set q(z) = q0p1(z) + q1(z), which is a polynomial with degree at most n− 1.

Let A ∈ Matd×d(C) with characteristic polynomial pA, and let f be an entire function. By
Proposition 8.13, there is a polynomial q and an entire function g such that for all z ∈ C,

f(z) = g(z)pA(z) + q(z).

By the Cayley–Hamilton Theorem,

f(A) = g(A)pA(A) + q(A) = q(A),

so we can easily calculate f(A) if we know the polynomial q.

https://en.wikipedia.org/wiki/Euclidean_algorithm
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Proposition 8.14. Let A ∈ Matd×d(C) with distinct eigenvalues λ1, . . . , λm and corresponding
multiplicities n1, . . . , nm. If f is an entire function, then there exists a unique polynomial q of
degree ≤ d− 1 defined by the conditions for all k ∈ {1, . . . ,m} and j ∈ {0, . . . , nk − 1}

djq

dzj
(λk) =

djf

dzj
(λk), (8.3)

such that f(A) = q(A).

Proof. By Proposition8.13, there is a polynomial q of degree at most d− 1 such that

f(z) = g(z)pA(z) + q(z).

By the Cayley–Hamilton Theorem, we have f(A) = q(A). From the assumptions on eigenvalues
of A, it follows that

pA(z) =
m∏
k=1

(z − λk)nk .

Since

f(z)− q(z) = g(z)
m∏
k=1

(z − λk)nk ,

for each k ∈ {1, . . . ,m}, both f and q have the same derivatives of order 1, 2, . . . , nk − 1 at
z = λk. That is, the conditions in (8.3) holds.

Using this, we may find a polynomial to calculate the exponential of a matrix.

Example 8.15. The matrix

A =

(
−2 1
1 −2

)
has the eigenvalues λ1 = −1 and λ2 = −3 (and thus, both have multiplicity 1). As A has
dimension 2, we look for a polynomial q of degree 1 such that eA = q(A). Let q(z) = az + b.
Then, by Proposition 8.14, we require that

q(−1) = e−1, q(−3) = e−3.

This gives the following linear system

−a + b = e−1,
−3a + b = e−3.

Therefore,

a =
1

2

(
e−1 − e−3

)
b =

1

2

(
3e−1 − e−3

)
.

Now we can explicitly write the exponential.

eA = q(A) = aA+ bI

=
1

2

(
e−1 − e−3

)(−2 1
1 −2

)
+

1

2

(
3e−1 − e−3

)(1 0
0 1

)
=

1

2
e−1

(
1 1
1 1

)
+

1

2
e−3

(
1 −1
−1 1

)
. �
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Example 8.16. We calculate again the exponential of the matrix A from Example 8.9 and
Example 8.10, where

A =

1 1 4
0 1 1
0 0 1

 .

As the characteristic polynomial of A is pA(λ) = (λ − 1)3, we see that A has one eigenvalue,
λ1 = 1, with multiplicity 3. From Proposition 8.14, we are looking for quadratic polynomial,
q(z) = az2 + bz + c, such that

q(1) = f(1)
q′(1) = f ′(1)
q′′(1) = f ′′(1)

⇔


a + b + c = e1

2a + b = e1

2a = e1
⇔


a = e

2
b = 0
c = e

2 .

Thus, q(z) = e
2z

2 + e
2 . Solving for the exponential,

eA = q(A) =
e

2
A2 +

e

2
I

=
e

2

1 1 4
0 1 1
0 0 1

2

+
e

2

1 0 0
0 1 0
0 0 1


=
e

2

1 2 9
0 1 2
0 0 1

+
e

2

1 0 0
0 1 0
0 0 1

 = e

1 1 9/2
0 1 1
0 0 1

 . �

8.3 Solving linear ODEs

We are finally ready to apply these results to solving linear ODEs.

Proposition 8.17. Let A ∈ Matd×d(R). The unique general solution to the IVP{
x′(t) = Ax(t),

x(t0) = x0

(8.4)

is given by
x(t) = eA(t−t0)x0.

Proof. By Proposition 8.4,

x′(t) =
d

dt

(
eA(t−t0)x0

)′
= AeA(t−t0)x0 = A · x(t).

Thus, x(t) satisfies the differential equation. For the initial condition in (8.4),

x(t0) = eA(t0−t0)x0 = e0x0 = Ix0 = x0.

To prove uniqueness, we show that f(t, x) = Ax satisfies the Lipschitz condition on R×Rd. For
all t ∈ R and for all x, y ∈ Rd,

‖f(t, x)− f(t, y)‖ = ‖Ax−Ay‖ ≤ ‖A‖ ‖x− y‖ .

By Theorem 7.9, uniqueness follows.

The solutions to the system (8.4) define a flow. To see this, let Φ(t, x0) = eAtx0. Then
Φ(0, x0) = eA0x0 = x0, and

Φ(s+ t, x0) = eA(s+t)x0 = eAteAsx0 = Φ(s, eAtx0) = Φ(s,Φ(t, x0)).

The fixed points of the system (8.4) are x = 0 and the eigenvectors of A that correspond to the
eigenvalue 0.
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Example 8.18. Consider the IVP

x′1 = x1 + 2x2,
x′2 = 2x1 + 4x2,

where x(1) = (3,−1)>. Writing this in matrix form, x′ = Ax, we have

A =

(
1 2
2 4

)
.

To calculate the solution from Proposition 8.17, x(t) = eA(t−t0)x0, we first find etA. The matrix
A has the eigenvalues 0 and 5 with corresponding eigenvectors(

−2
1

)
,

(
1
2

)
.

Let S be the matrix with columns given by the eigenvectors. Since A = SDS−1,

tA = StDS−1 =

(
−2 1
1 2

)(
0 0
0 5t

)
1

5

(
−2 1
1 2

)
.

Thus,

etA = SetDS−1 =

(
−2 1
1 2

)(
1 0
0 e5t

)
1

5

(
−2 1
1 2

)
=

1

5

(
e5t + 4 2e5t − 2
2e5t − 2 4e5t + 1

)
.

The solution is thus

x(t) = eA(t−t0)x0 = e(t−1)A

(
3
−1

)
=

1

5

(
e5(t−1) + 4 2e5(t−1) − 2

2e5(t−1) − 2 4e5(t−1) + 1

)(
3
−1

)
=

1

5

(
e5(t−1) + 14

2e5(t−1) − 7

)
.

As noted above, the fixed points of x′ = Ax are either x = 0 or the eigenvectors of A
corresponding to the eigenvalue 0. Let x0 = (−2, 1)>, and let c ∈ R. Then for all t ∈ R,

Φ(t, cx0) = eAtcx0

=
1

5

(
e5t + 4 2e5t − 2
2e5t − 2 4e5t + 1

)
c

(
−2
1

)
=
c

5

(
−10

5

)
= c

(
−2
1

)
= cx0.

Therefore, the entire subspace spanned by (−2, 1)> is fixed by Φ. Flows for this example can
be seen in Figure 8.1. �

Theorem 8.19. If A ∈ Matd×d(R) has d linearly independent eigenvectors, v1, . . . , vd, with
corresponding eigenvalues λ1, . . . , λd, then there exist constants c1, . . . , cd, such that the solution
to x′ = Ax is

x(t) = c1e
λ1tv1 + · · ·+ cde

λdtvd. (8.5)
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x1

x2

Figure 8.1: A few trajectories of points from Example 8.18

Proof. By Proposition 8.17, the general solution is x(t) = eAtu, for some u ∈ Rd. By Proposi-
tion 8.6, A is diagonalizable, so there exists S,D ∈ Matd×d(R) such that A = SDS−1, where
S =

(
v1 v2 · · · vd

)
, the matrix whose columns are the eigenvectors vi. The solution to the

ODE is then
x(t) = SetDS−1u.

Let

S−1u =


c1

c2
...
cd

 .

Then

x(t) =
(
v1 v2 · · · vd

)

eλ1t · · · 0

eλ2t

. . .

0 . . . eλdt



c1

c2
...
cd



=
(
v1 v2 . . . vd

)

c1e

λ1t

c2e
λ2t

...
cde

λdt


= v1c1e

λ1t + v2c2e
λ2t + . . .+ vdcde

λdt.

Theorem 8.19 gives an alternative method of solving an IVP.

Example 8.20. Consider again the IVP given in Example 8.18. The two eigenvectors of the
matrix A are linearly independent, and so by Theorem 8.19, the solution is

x(t) = c1e
0t

(
−2
1

)
+ c2e

5t

(
1
2

)
= c1

(
−2
1

)
+ c2e

5t

(
1
2

)
,

for some c1, c2 ∈ R. We can use the initial condition x(1) = (3,−1)> to find c1 and c2. �

Remark 8.21. If A is not diagonalizable, then terms of the form tjeλt appear in the solu-
tion (8.4).
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Theorem 8.22. The fixed point x = 0 of the system x′ = Ax is asymptotically stable if and
only if Re(λ) < 0 for all eigenvalues of λ of A.

Sketch of Proof. If A is diagonalizable, then from Theorem8.19, solutions have the form

x(t) = c1e
λ1tv1 + . . .+ cde

λdtvd.

Observing that |eλt| = eRe(λ)t, it follows that |eλt| approaches 0 if and only if Re(λ) < 0. In
this case, ‖x(t)‖ → 0 as t →∞. In the general case (not diagonalizable), the solution contains
coefficients of the form tjeλt, but the absolute value of such terms also tends to 0 as t → ∞ if
λ < 0.

We now consider in more detail the solutions of 2-dimensional linear ODEs x′ = Ax.

Example 8.23. We first consider a simple case

A =

(
λ1 0
0 λ2

)
,

where λ1, λ2 ∈ R. From before, we know that

eA =

(
eλ1 0
0 eλ2

)
.

Thus, the solution to x′(t) = Ax(t) is

x(t) = eAtx0 =

(
eλ1t0 0

0 eλ2t0

)(
x

(1)
0

x
(2)
0

)(
eλ1tx

(1)
0

eλ2tx
(2)
0

)
.

The behavior of the system depends on the values of the eigenvalues λ1 and λ2. Some
trajectories are graphed in Figure 8.2, but we will analyze the system based on the eigenvalues.

Case 1: λ1 < 0, λ2 < 0. The fixed point x = 0 is stable and asymptotically stable.

Case 2: λ1 > 0, λ2 > 0. The fixed point x = 0 is unstable and repelling.

Case 3: λ1 > 0, λ2 < 0. The fixed point x = 0 is a saddle point. The x-axis is unstable
manifold, and the y-axis is stable manifold.

Case 4: λ1 = 0, λ2 > 0. There is a fixed line at the x1-axis, and each point on this line is
unstable and repelling.

Case 5: λ1 = 0, λ2 < 0. There is a fixed line at the x1-axis, and each point on this line is stable
and asymptotically stable. �

Example 8.24 (Two linearly independent eigenvectors). Consider the system x′ = Ax where

A =

(
2 3
0 −1

)
.

The eigenvalues of A are 2 and −1 with the corresponding eigenvectors(
1
0

)
,

(
1
−1

)
.

Since the eigenvectors are linearly independent, by Theorem 8.19, the solution is

x(t) = c1e
2t

(
1
0

)
+ c2e

−t
(

1
−1

)
.

The phase portrait is plotted in Figure 8.3. �
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x1

x2

(a) λ1 = −1, λ2 = −1/2.

x1

x2

(b) λ1 = 1/4, λ2 = 1.

x1

x2

(c) λ1 = 3/4, λ2 = −1/2.

x1

x2

(d) λ1 = 0, λ2 = 1.

x1

x2

(e) λ1 = 0, λ2 = −1.

Figure 8.2: Five different cases for a system determined by a diagonal matrix, as discussed in
Example 8.23.

x1

x2

Figure 8.3: The phase portrait of the solution from Example 8.24. The first eigenvector spans
the x1-axis, and the second eigenvector spans the dashed line given by x2 = −x1.
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x1

x2

(a) λ < 0.

x1

x2

(b) λ > 0.

Figure 8.4: Two cases discussed in Example 8.25.

Example 8.25 (One linearly independent eigenvector). Now we consider the matrix

A =

(
λ 1
0 λ

)
,

which has eigenvalue λ and eigenvector (1, 0)> and is thus not diagonalizable. We apply Propo-
sition 8.14 to calculate etA. Let f(z) = etz and q(z) = az + b. Then we have the system of
equations {

f(λ) = q(λ),
f ′(λ) = q′(λ),

⇔
{
etλ = aλ+ b,
tetλ = a.

Therefore, a = teλt and b = eλt − λteλt, so

q(z) = teλtz + eλt − λteλt.

Thus

etA = teλt
(
λ 1
0 λ

)
+
(
eλt − λteλt

)(1 0
0 1

)
=

(
eλt teλt

0 eλt

)
.

So the solutions have the form:

x(t) = etAx0 = eλt
(

1 t
0 1

)(
x

(1)
0

x
(2)
0

)
.

We can see how the solutions change depending on the sign of the eigenvalue. We know when
λ < 0, x = 0 will be stable and attracting, and when λ > 0, x = 0 will be unstable and repelling.
This is seen in Figure 8.4. �

Example 8.26 (Complex eigenvalues). If we have a matrix with two complex eigenvalues, we
can determine the behavior of the system from the real Jordan normal form

A =

(
α −β
β α

)
= αI + β

(
0 −1
1 0

)
= αI + βJ,

where α, β ∈ R. The matrices αI and βJ commute, so that

eA = eαI+βJ = eαIeβJ .

Recall that eαI = eαI. To calculate eβJ , observe that

J2 =

(
0 −1
1 0

)2

=

(
−1 0
0 −1

)
= −I.
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Therefore, J4 = I. Thus for all n ∈ N we have(
0 −1
1 0

)2n

= (−1)nI,

(
0 −1
1 0

)2n+1

= (−1)nJ.

Then

eβJ =
∞∑
m=0

βmJm

m!

=

( ∞∑
k=0

β2k

(2k)!
(−1)k

)
︸ ︷︷ ︸

cosβ

I +

( ∞∑
k=0

β2k+1

(2k + 1)!
(−1)k

)
︸ ︷︷ ︸

sinβ

J

= (cosβ)I + (sinβ)J

=

(
cosβ − sinβ
sinβ cosβ

)
.

Therefore, the matrix exponential is

eAt = eαtIeβtB = eαt
(

cosβt − sinβt
sinβt cosβt

)
.

Alternatively, to find etA, let f(z) = etz and q(z) = az+ b. We know that the eigenvalues of
A are λ = α± iβ, so we have the system of equations{

f(α+ iβ) = q(α+ iβ)
f(α− iβ) = q(α− iβ)

⇔
{
eαt+iβt = aα+ aiβ + b
eαt−iβt = aα− aiβ + b

Thus,

a =
eαt

2iβ

(
eiβt − e−iβt

)
, b =

eαt

2iβ

(
eiβt(−α+ iβ) + e−iβt(α+ iβ)

)
.

As before, the solution is

etA = aA+ bI = eαt
(

cosβt − sinβt
sinβt cosβt

)
.

Note that in this simple case, the sign of β determines the direction of the rotation: β > 0
implies clockwise rotation and β < 0 implies anticlockwise rotation. More generally, to find the
direction of rotation one can calculate Ax for a vector x, and use the fact that x′ = Ax is a
vector tangent to the orbit through x at x.

We examine the behavior of the system for various values of α. Various trajectories are
plotted in Figure 8.5.

Case 1: α = 0. The system simplifies to

x(t) =

(
cosβt − sinβt
sinβt cosβt

)(
x

(1)
0

x
(2)
0

)
=

(
x

(1)
0 cosβt− x(2)

0 sinβt

x
(2)
0 cosβt+ x

(1)
0 sinβt

)
.

In this case, ‖x(t)‖ = ‖x(0)‖, so the distance from the origin remains constant for all
t. The fixed point x = 0 is a stable fixed point but not asymptotically stable. Every
x ∈ R2 \ {0} is a periodic point with period T = 2π

β .

Case 2: α < 0. In this case, ‖x(t)‖ = eαt‖x(0)‖ → 0 as t → ∞. Therefore, x = 0 is a stable
and asymptotically stable fixed point.

Case 3: α > 0. Similar to Case 2, ‖x(t)‖ = eαt‖x(0)‖ → +∞ as t → ∞. Therefore, x = 0 is
an unstable and repelling fixed point. �
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x1

x2

(a) α = 0.

x1

x2

(b) α < 0.

x1

x2

(c) α > 0.

Figure 8.5: The trajectories of three cases from Example 8.26 based on the value of α.
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Chapter 9

Non-linear ODEs

As we saw in Chapter 8, we can often use the solution of an ODE to define a flow Φ. If the
ODE is given by

x′ = f(x),

then we say the the autonomous function f generates the flow, denoted by Φf . Recall that x̄ is
a fixed point of a flow Φ if and only if Φ(t, x̄) = x̄ for all t ∈ R, and furthermore, Φ(t, x̄) = x̄ if
and only if f(x̄) = 0.

Definition 9.1. Let U ⊆ Rn be an open set, and let f : U → Rn be a C1-function. A fixed
point x̄ of Φf is called hyperbolic if all eigenvalues of Df(x̄) have nonzero real part.

Theorem 9.2. Let f : U → Rn be a C1-function, and let x̄ be a hyperbolic fixed point of the
flow Φf .

1. The fixed point x̄ is asymptotically stable if and only if each eigenvalue λ of Df(x̄) satisfies
Re(λ) < 0.

2. The fixed point x̄ is unstable and repelling if and only if each eigenvalue λ of Df(x̄) satisfies
Re(λi) > 0.

3. The fixed point x̄ is a saddle point if and only if there exist eigenvalues λ, λ′ of Df(x̄) with
Re(λ) < 0 and Re(λ′) > 0.

The real value of Theorem 9.2 is that we understand the behavior of such systems without
needing to find a solution.

Example 9.3. Consider the system {
x′ = −2x− y2,

y′ = −x2 − y.

In other words, the system is defined by the function f : R2 → R2, where f(x, y) = (−2x −
y2,−x2 − y). It is clear that (x, y) = (0, 0) is a fixed point. The Jacobian at (0, 0) is

Df(0, 0) =

(
−2 −2y
−2x −1

)∣∣∣∣
(x,y)=(0,0)

=

(
−2 0
0 −1

)
.

Thus, as the eigenvalues are both real and negative. From Theorem 9.2, the fixed point (0, 0) is
asymptotically stable. �

89
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Example 9.4 (van der Pol’s equation). For µ ∈ R, consider the differential equation

x′′ − µ(1− x2)x′ + x = 0. (9.1)

Setting x1 = x and x2 = x′, we rewrite (9.1) as the system{
x′1 = x2

x′2 = µ(1− x2
1)x2 − x1.

(9.2)

Like in Example 9.3, the system in (9.2) can be rewritten as x′ = f(x), where x ∈ R2 and
f : R2 → R2 with f(x1, x2) = (x2, µ(1− x2

1)x2− x1). Observe that (0, 0) is, again, a fixed point.
Thus,

Df(0, 0) =

(
0 1

−2µx1x2 − 1 µ(1− x2
1)

)∣∣∣∣
(x1,x2)=(0,0)

=

(
0 1
−1 µ

)
=: A.

Now we need to determine the eigenvalues of A. The characteristic polynomial is

pA(λ) = −λ(µ− λ) + 1 = λ2 − µλ+ 1,

whose zeroes (and thus the eigenvalues) are

λ =
µ±

√
µ2 − 4

2
.

The eigenvalues are real if |µ| ≥ 2. In this case, using the fact that
√
µ2 − 4 < µ, we see that

for µ ≤ −2, the eigenvalues are both negative, and for µ ≥ 2, the eigenvalues are both positive.
On the other hand, if |µ| < 2, then the eigenvalues are complex, with real part having the same
sign as µ. In summary,

� if µ > 0, then Re(λ) > 0, so the origin is an unstable and repelling fixed point;

� if µ < 0, then Re(λ) < 0, so the origin is an asymptotically stable fixed point.

If the scalar µ = 0, the system (9.2) becomes(
x′1
x′2

)
=

(
0 1
−1 0

)(
x1

x2

)
,

which is a linear system. The eigenvalues of the matrix are ±i. Let f(z) = etz and q(z) = az+b.
Then the system{

f(i) = q(i),
f(−i) = q(−i), ⇔

{
ai+ b = eit,
−ai+ b = e−it,

has solution a = sin t and b = cos t. The solution is then

etA = q(A) = aA+ bI = sin t

(
0 1
−1 0

)
+ cos t

(
1 0
0 1

)
=

(
cos t sin t
− sin t cos t

)
,

so (
x1

x2

)
=

(
cos t sin t
− sin t cos t

)(
x1(0)
x2(0)

)
.

Each orbit is a rotation around the origin (with no scaling). Thus, in this case the origin is a
stable (neither attracting nor repelling) fixed point. �
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9.1 Lyapunov functions

Lyapunov functions are another tool for analyzing the stability of fixed points of non-linear
dynamical systems. We will define these functions soon, but there is no general method for
constructing Lyapunov functions. However, in many common scenarios, we can use these to
determine stability.

Definition 9.5. Let L : Rd → R be a continuously differentiable function, and suppose f :
Rd → Rd satisfies the Lipschitz condition. The orbital derivative of L in the direction of f is
the function L′f : Rd → R given by

L′f (x) :=
d∑

k=1

∂L

∂xk
(x)fk(x) = grad L(x) · f(x).

Thus we can think of L′f (x) as the derivative of L(x) in the tangent direction f(x) for the
orbit through x. This derivative is also known as the directional derivative of L in the direction
of (the tangent of) f and be identified as the Lie derivative of L along f . Sometimes L′f (x) is
also referred to as the derivative of L with respect to the system x′ = f(x). If x(t) is a solution
to x′ = f(x) then the chain rule gives

d

dt
L(x(t)) =

d∑
k=1

∂L

∂xk
(x(t))x′k(t) = L′f (x(t)).

Definition 9.6. Let x0 be a fixed point of f , and let Ω ⊆ Rd be an open neighborhood containing
x0. A continuously differentiable function L : Ω → R is called a Lyapunov function for the
system x′ = f(x) if L(x0) = 0 and

(i) for all x ∈ Ω \ {x0}, L(x) > 0 and

(ii) for all x ∈ Ω \ {x0}, L′f (x) ≤ 0.

We call L a strict Lyapunov function if (ii) is always a strict inequality.

Example 9.7. We consider Lyapunov function for the system given by

x′ = −2x− y
y′ = −x2 − 4x− y.

Let f(x, y) := (−2x − y,−x2 − 4x − y). The fixed points of the system are (x, y) such that
f(x, y) = (0, 0). Thus, fixed points satisfy

y = −2x, y = −x2 − 4x.

Since y is determined by x, it follows that the x-value of all fixed points satisfy

0 = x2 + 2x = x(x+ 2).

Therefore, there are two fixed points of the system: (0, 0) and (−2, 4).
We define a Lyapunov function for x0 = (−2, 4). Set

L(x, y) = (x+ 2)2 + (y − 4)2,

which satisfies L(x0) = 0 and L(x) > 0 for x ∈ R2 \ {x0}. To determine if the last condition is
satisfied, we take the orbital derivative along f :

L′f (x, y) = (2x+ 4, 2y − 8) · (−2x− y,−x2 − 4x− y)

= −(2x+ 4)(2x+ y)− (2y − 8)(x2 + 4x+ y)

= −2x2y + 4x2 − 10xy + 24x− 2y2 + 4y.
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The gradient of L′f is (−4x(y− 2)− 10y+ 24,−2(x2 + 5x+ 2y− 2)). The function L′f (x, y) has
a local maximum at (−2, 4), so there exists an open neighborhood Ω around (−2, 4) such that
L is a Lyapunov function. �

The question left hanging now is: how does this help us analyze dynamical systems? Right
now, it just seems like these are mysterious functions. The next proposition proves that the
existence of a Lyapunov function implies stability.

Proposition 9.8. If the system x′ = f(x) has a Lyapunov function in a neighborhood Ω of the
fixed point x0, then x0 is a stable fixed point.

Proof. Let ε > 0. Without loss of generality, we can assume that Bε(x0) ⊆ Ω. We need to show
that there exists δ > 0 such that ‖x(t)− x0‖ < ε for all t whenever ‖x(0)− x0‖ < δ. Let

Sε = {x ∈ Ω : ε/2 ≤ ‖x− x0‖ ≤ ε} = Bε(x0) \Bε/2(x0).

The set Sε is closed and bounded,

µ := min
x∈Sε

{L(x)}

is well-defined and µ > 0 = L(x0). As L is continuous, we may choose δ > 0 with δ < ε/2 such
that L(x) < µ for all ‖x− x0‖ < δ.

Let x(t) be a solution for the system x′ = f(x). The condition that L′f (x) ≤ 0 implies that
L(x) decreases along the orbits x(t). Thus, ‖x(0)− x0‖ < δ implies that L(x(0)) < µ; hence,
L(x(t)) < µ for all t ≥ 0 because L′f (x) ≤ 0. Therefore, ‖x(t)− x0‖ < ε/2 for all t ≥ 0, and
thus the fixed point x = 0 is stable.

The next proposition takes Proposition 9.8 further to give conditions on asymptotically stable
fixed points.

Proposition 9.9. If the system x′ = f(x) has a strict Lyapunov function in a neighborhood Ω
of the fixed point x0, then x0 is an asymptotically stable fixed point.

Proof. Let x(t) be a solution of x′ = f(x) and L(x) a strict Lyapunov function. Let ε > 0 and
take δ as in the proof of Proposition 9.8, so that for ‖x(0)− x0‖ ≤ δ, ‖x(t)− x0‖ ≤ ε/2 for all
t ≥ 0. Since L(x(t)) is decreasing and bounded below, the limit

lim
t→∞

L(x(t))

exists; call it L0. By the nonnegativity of L, it follows that L0 ≥ 0.
We will show that L0 = 0, so suppose instead then that L0 > 0. By the continuity of L,

there exists r > 0 such that r < ε/2 and L(x) = ‖L(x)‖ < L0 whenever ‖x− x0‖ < r. Let

∆ := {x ∈ Rd : r ≤ ‖x− x0‖ ≤ ε/2}.

As the set ∆ is closed and bounded and L′f is continuous, the number

k := max
x∈∆
{L′f (x)}

exists. Since L is a strict Lyapunov function, k 6= 0, so k < 0. For ‖x(0)− x0‖ ≤ δ, we have
x(t) ∈ ∆ for all t ≥ 0. Thus L′f (x(t)) ≤ k < 0 for all t ≥ 0. This implies that

lim
t→∞

L(x(t)) = −∞,

which is a contradiction. Thus, 0 = L0 = lim
t→∞

L(x(t)), so by continuity of L, lim
t→∞

x(t) = x0.

This implies that x0 is asymptotically stable.
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Remark 9.10. One could write Propositions 9.8 and 9.9 only for the fixed point x = 0. Such
statements are equivalent to the ones above as we may translate the system and then apply the
Propositions. That is, we set g(x) = f(x+ x̄) so that g(0) = f(x̄) = 0.

Example 9.11. We revisit Example 9.7. Recall the system there is given by

x′ = −2x− y
y′ = −x2 − 4x− y,

where f(x, y) := (−2x− y,−x2 − 4x− y). The fixed points are (0, 0) and (−2, 4).
We constructed a Lyapunov function for the fixed point (−2, 4), namely:

L(x, y) = (x+ 2)2 + (x− 4)2.

In fact, this is a strict Lyapunov function. Thus, by Proposition 9.9, the fixed point (−2, 4) is
asymptotically stable.

Note that it is not so easy to find a Lyapunov function for the fixed point (0, 0). The Jacobian
of f at (0, 0) is

Df(0, 0) =

(
−2 −1

−2x− 4 −1

)∣∣∣∣
(x,y)=(0,0)

=

(
−2 −1
−4 −1

)
.

The matrix Df(0, 0) has one positive and one negative eigenvalue. Therefore, by Proposition 9.8,
there cannot exist a Lyapunov function for the fixed point (0, 0). �

Example 9.12. Consider the system

x′ = −x3 + y2

y′ = −2xy − y

This time, the origin is the only fixed point. Writing the system, as usual, as x′ = f(x), we
calculate the Jacobian at (0, 0) to be

Df(0, 0) =

(
−3x2 −2y
−2y −2x− 1

)∣∣∣∣
(x,y)=(0,0)

=

(
0 0
0 −1

)
.

Let us try to find a Lyapunov function; we look for something of the form L(x, y) = Ax2 +By2,
with A,B > 0. Note that this already satisfies the first condition of Lyapunov functions. Then

L′f (x, y) = 2Ax(−x3 + y2) + 2By(−2xy − y)

= −2Ax4 + (2A− 4B)xy2 − 2By2.

If we can get 2A − 4B = 0, then we can satisfy the second condition of Lyapunov functions.
Setting A = 2 and B = 1 yields

L′f (x, y) = −4x4 − 2y2,

which is negative for for all (x, y) 6= (0, 0). Thus L(x, y) = 2x2 +y2 is a strict Lyapunov function
for our system, and (0, 0) is an asymptotically stable fixed point of the system. �

Finding a Lyapunov function for a system can be a process of trial and error, and “all the
functions I’ve tried are not Lyapunov functions” is not a proof that a given fixed point is not
stable! It actually suggests that you might try a different approach entirely: show the fixed
point is not stable. We can try forming the Jacobian and calculating eigenvalues, as mentioned
above, or use the following alternative method to verify instability.
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Proposition 9.13. Let x′ = f(x) be a system with fixed point x0, and suppose Ω is an open
neighborhood about x0. Let Ω′ be an open subset of Ω and G : Ω→ R a continuously differentiable
function such that

(i) x0 ∈ Ω′;

(ii) G(x) > 0 and G′f (x) > 0 for all x ∈ Ω′;

(iii) G(x) = 0 for all x ∈ ∂Ω′ ∩ Ω.

Then x0 is an unstable fixed point.

Proof. By definition, x0 is an unstable fixed point of the system if there is an open ball around
x0 with the property that there are orbits starting arbitrarily close to x0 that leave the ball.
Choose ε > 0 such that

Bε(x0) = {x ∈ Rd : ‖x− x0‖ ≤ ε} ⊆ Ω.

Since x0 ∈ Ω′, we are done if we can show that each orbit starting in Ω′ leaves Bε(x0). To
this end, let x(t) be a solution to x′ = f(x) with x(0) ∈ Ω′. As G(x(0)) > 0 we can choose δ > 0
such that G(x(0)) > δ, and then define

∆ =
{
x ∈ Ω′ ∩Bε(x0) : G(x) ≥ δ

}
.

The set ∆ is closed and bounded, so that the number

k = min
x∈∆
{G′f (x)} > 0

exists. Suppose that x(t) ∈ ∆ for all t ≥ 0. Then by compactness of ∆,

x∗ := lim
t→∞

x(t) ∈ ∆.

But this means that k ≤ G′f (x(t)) for all t, which implies that

G
(

lim
t→∞

x(t)
)

= lim
t→∞

G(x(t)) =∞.

This is a contradiction, so there exists t > 0 such that x(t) /∈ ∆. Since G(x(t)) > G(x(0)) ≥ δ,
this implies that x(t) /∈ Bε(x0).

Example 9.14. Consider the system

x′ = x+ xy

y′ = −2y + xy.

The origin is a fixed point of the system. Let G(x, y) = x2− y2. Then G(x, y) = 0 if and only if
x2 = y2, which is equivalent to |x| = |y|. We are looking for Ω and Ω′ to satisfy the conditions
of Proposition 9.13. First, we set

U =
{

(x, y) ∈ R2 : x > |y|
}
.

For all (x, y) ∈ U , G(x, y) > 0 and for all (x, y) ∈ ∂U , G(x, y) = 0. The orbital derivative of G
along f is

G′f (x, y) = 2x(x+ xy)− 2y(−2y + xy)

= 2x2 + 2x2y + 4y2 − 2xy2

= 2x2 + 4y2 + 2x2y − 2xy2.

We need that G′f (x, y) > 0 for all (x, y) ∈ Ω′. The only (possibly) negative parts of the above
expression are the last two terms, so we look for the minimum of the function F (x, y) :=
2x2y − 2xy2 on U . The function F has a critical point only (0, 0), and F (0, 0) = 0. We check
the boundaries:
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(i) if y = x, then F (x, x) = 2x3 − 2x3 = 0, and

(ii) if y = −x, then F (x,−x) = −2x3 − 2x3 = −4x3.

So we need to bound our region. Let Ω = B1(0), and set

Ω′ = U ∩ Ω = {(x, y) ∈ R2 : |y| < x < 1}.

Then the conditions of Proposition 9.13 are fulfilled, and thus the origin is an unstable fixed
point of the system. �

Example 9.15. Consider the system

x′ = x2 + 2x2y,

y′ = xy + x3,

and let G(x, y) = Ax2 − By2. Again, the origin is a fixed point of the system. The orbital
derivative of G along f is

G′f (x, y) = 2Ax(x2 + 2x2y)− 2By(xy + x3)

= 2Ax3 + 4Ax3y − 2Bxy2 − 2Bx3y

= 2Ax3 + x3y(4A− 2B)− 2Bxy2

Setting A = 1 and B = 2, G(x, y) = x2 − 2y2 and

G′f (x, y) = 2x3 − 4xy2 = 2x(x2 − 2y2).

For Ω = B1(0), let Ω′ = {x ∈ Ω : x2 > 2y2, x > 0}, which is an open set of Ω. Then the
conditions of Proposition 9.13 are satisfied. Therefore, the origin is an unstable fixed point. �
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Chapter 10

Dynamic Programming

A discrete dynamic optimization problem can be modeled mathematically as follows. Let G =
{t0, . . . , tN} ⊆ R be a lattice of N+1 fixed points. The state trajectory function is denoted by
y : G→ Rn, and the control function is denoted by u : G→ Rm. With ϕ : G×Rn×Rm → R,
the objective function is

f(y, u) :=
N∑
j=0

ϕ(tj , y(tj), u(tj)).

For ψ : G× Rn × Rm → Rn, the dynamic equations are, for j ∈ {0, . . . , N − 1},

y(tj+1) = ψ(tj , y(tj), u(tj)).

We require that the state trajectory function always map into the (nonempty) state restriction
sets Y (tj) ⊆ Rn. That is, for all tj ∈ G, y(tj) ∈ Y (tj). Furthermore, we require that the control
functions always map into the (nonempty) control restriction sets U(tj , y(tj)) ⊆ Rm, so for
all tj ∈ G, u(tj) ∈ U(tj , y(tj)).

The discrete optimization problem is the following.

Problem 10.1 (Discrete optimization problem). Given a state trajectory function y : G→ Rn
and a control function u : G→ Rm, minimize the sum

N∑
j=0

ϕ(tj , y(tj), u(tj))

subject to the conditions:

(∀j ∈ {0, . . . , N − 1}) y(tj+1) = ψ(tj , y(tj), u(tj)),

(∀j ∈ {0, . . . , N}) y(tj) ∈ Y (tj),

(∀j ∈ {0, . . . , N}) u(tj) ∈ U(tj , y(tj)).

Usually, the sets Y (tj) and U(tj , y(tj)) are implicitly given as solution sets to the equations
determined by ψ.

Example 10.2 (Warehousing). A firm wants to store a product for a fixed number of times
t0 < · · · < tN with minimal cost. Denote by uj ≥ 0 the delivered quantity at tj , by rj ≥ 0
the demands in the interval [tj , tj+1), and yj the quantity of goods stored at tj (directly before
delivery). Therefore, for j ∈ {0, . . . , N − 1},

yj+1 = yj + uj − rj .

97
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We also require that the demands also be met, so yj+1 ≥ 0 for j ∈ {0, . . . , N − 1}. Without loss
of generality, we assume that y0 = yN = 0. The delivery costs at time tj are modeled by

B(uj) =

{
cuj +K if uj > 0,

0 if uj = 0,

where c is the cost per unit of product and K is the fixed cost for delivery. For x ∈ R`, let 1

δ(x) =

{
1 if x 6= 0,

0 if x = 0.

Therefore, we can write more compactly B(uj) = cuj + Kδ(uj). The warehousing costs fall at
the end of the each time interval and are given by hyj+1. Therefore the total cost is

N−1∑
j=0

cuj +Kδ(uj) + hyj+1. (10.1)

We want to write the total cost in (10.1) with just j (and no j+ 1). To that end, notice that
since y0 = YN = 0,

N−1∑
j=0

yj+1 =
N∑
j=1

yj =
N−1∑
j=0

yj .

Therefore, we can state the warehousing optimization problem as follows.

Problem 10.3. Minimize

N−1∑
j=0

Kδ(uj) + hyj

subject to the constraints

(∀j ∈ {0, . . . , N − 1}) yj+1 = yj + uj − rj ,
y0 = yN = 0,

(∀j ∈ {1, . . . , N}) yj ≥ 0,

(∀j ∈ {0, . . . , N − 1}) uj ≥ 0.

Example 10.4 (The Knapsack Problem). This simple problem is found in various applications.
Each uj describes an object one wants to put in their knapsack. Each object is given a weight
wj and a value vj . The knapsack has a total allowed weight W , and the goal is increase the
value without going beyond the weight. In other words, maximize

N∑
j=1

vjuj

subject to the constraints that uj ∈ {0, 1} and

N∑
j=1

wjuj ≤W.

However, we can state this as a dynamical optimization problem. We let yj denote the remaining
weight available in the knapsack after time tj , and let yN+1 denote the remaining weight at the
end.

1This is called the Kronecker delta function.

https://en.wikipedia.org/wiki/Knapsack_problem


10.1. THE PRINCIPLE OF OPTIMALITY 99

Problem 10.5. Maximize

N∑
j=1

vjuj

subject to

(∀j ∈ {1, . . . , N}) yj+1 = yj − wjuj ,
y1 = W,

(∀j ∈ {1, . . . , N}) yj ≥ 0,

(∀j ∈ {1, . . . , N}) uj

{
∈ {0, 1} if yj ≥ wj ,
= 0 if yj < wj .

10.1 The Principle of Optimality
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