Symplectic Hecke eigenbases from Ehrhart polynomials

Joshua Maglione

How to Navigate:

Spacebar: Forward

Shift + Spacebar: Backward

Escape: Jump around

Arrow keys: Move around

Bielefeld

Bielefeld

Ehrhart polynomials

\(E(t) = 10t^2 + 5t + 1\)

\(E_P^{\Lambda}(t)\) : Ehrhart polynomial

\(t \mapsto \#(tP\cap \Lambda)\)

lattice

polytope

\(E(1)=16\)

\(E(3)=106\)

\(E(2)=51\)

Lattices

\(\Lambda\)

\(\frac{1}{2}\Lambda\)

\(\frac{1}{3}\Lambda\)

Consider how \(\mathscr{E}_{n,\ell}^{\Lambda}\) changes as we refine the lattice \(\Lambda\).

Let \(E_P^{\Lambda}(t) = c_0 + c_1t + \cdots + c_nt^n\). For \(\ell\in \{0,\dots, n\}=[n]_0\), define

\mathscr{E}_{n, \ell}^{\Lambda}(P) = c_{\ell}.

Thus, \(\mathscr{E}_{n,\ell}^{\Lambda}\) is the function on polytopes in \(\mathbb{R}^n\) extracting the \(\ell\)th coefficient of its Ehrhart polynomial.

Lattices \(\Lambda\supseteq\mathbb{Z}^2\)

\Lambda = 2^{-1}\left(\begin{smallmatrix} \phantom{0} & \phantom{0} \\ \phantom{0} & \phantom{0} \end{smallmatrix}\right)
\Lambda = 4^{-1}\left(\begin{smallmatrix} \phantom{0} & \phantom{0} \\ \phantom{0} & \phantom{0} \end{smallmatrix}\right)
\mathcal{E}_{2, 1}^{\Lambda}(\phantom{poly})
\begin{aligned} \mathrm{conv}&\{(0,0), (0,3), (2,3),\\ &\;(3,0), (4,2)\} \end{aligned}
\begin{aligned} \mathrm{conv}&\{(0,0), (0,2), (1,4),\\ &\;(3,2), (4,0)\} \end{aligned}
\begin{aligned} \mathrm{conv}&\{(0,0), (0,2), (1,4),\\ &\;(3,2), (4,0)\} \end{aligned}
\begin{aligned} \mathrm{conv}&\{(0,0), (0,1), (1,0)\} \end{aligned}

Normalized sums of coefficients

Fix a lattice \(\Lambda_0=\mathbb{Z}^n\) and polytope \(P\), with \(\mathscr{E}_{n,\ell}^{\Lambda_0}(P)\neq 0\). Define

where \(\Lambda\supseteq\Lambda_0\) runs over all lattices in \(\mathbb{Q}^n\) with \(\#(\Lambda/\Lambda_0)=m\).

Just as a lattice can be seen as a \(\mathrm{GL}_n(\mathbb{Z})\)-coset in \(\mathrm{GL}_n(\mathbb{Q})\cap\mathrm{Mat}_n(\mathbb{Z})\),

a symplectic lattice is a \(\mathrm{GSp}_{2n}(\mathbb{Z})\)-coset in \(\mathrm{GSp}_{2n}(\mathbb{Q})\cap\mathrm{Mat}_{2n}(\mathbb{Z})\).

\mathcal{C}_{P,\ell}^{\mathsf{A}} : \mathbb{N} \longrightarrow \mathbb{Q}
m \longmapsto \dfrac{1}{\mathscr{E}_{n,\ell}^{\Lambda_0}(P)} \sum_{\Lambda} \mathscr{E}_{n,\ell}^{\Lambda}(P),

Define \(\mathcal{C}_{P,\ell}^{\mathsf{C}} : \mathbb{N}\to \mathbb{Q}\) similarly but restricted to symplectic lattices.

We computed \(\mathcal{C}_{P,1}^{\mathsf{A}}(2)\) and \(\mathcal{C}_{P,1}^{\mathsf{A}}(4)\).

An arithmetic function

Write \(\mathsf{X}\) for either \(\mathsf{A}\) or \(\mathsf{C}\).

Proof uses Hecke algebra like in theory of automorphic forms.

Theorem (Alfes–M–Voll). 

(Ind.) For polytopes \(P\) and \(P'\), with \(\dim P=\dim P'\),

 

(Mult.) For \(a,b\in \mathbb{N}\) with \(\mathrm{gcd}(a,b)=1\), 

\mathcal{C}_{P,\ell}^{\mathsf{X}}(ab) = \mathcal{C}_{P,\ell}^{\mathsf{X}}(a)\mathcal{C}_{P,\ell}^{\mathsf{X}}(b).
\mathcal{C}_{P,\ell}^{\mathsf{X}}=\mathcal{C}_{P',\ell}^{\mathsf{X}}.

Growth rate of coefficients

For functions \(f,g : \mathbb{R}\to \mathbb{R}\), we write

f(N) \sim g(N) \quad \iff \quad \lim_{N\to \infty} \dfrac{f(N)}{g(N)} = 1.

Proposition (Alfes–M–Voll).

Let \(\ell\in \{0,1,\dots, n\}\). Assuming \(\mathscr{E}_{n,\ell}^{\Lambda_0}(P)\neq 0\), 

\sum_{m=1}^{N} \mathcal{C}_{P,\ell}^{\mathsf{A}}(m) \,\sim\, \begin{cases} \frac{\zeta(n-\ell)}{n} \zeta(2)\zeta(3) \cdots \zeta(n-1) N^n & \text{if }\ell\leqslant n-2, \\[0.5em] \frac{1}{n}\zeta(2)\zeta(3) \cdots \zeta(n-2) N^n \log N & \text{if }\ell=n-1, \\[0.5em] \frac{1}{n+1} \zeta(2)\zeta(3) \cdots \zeta(n) N^{n+1} & \text{if }\ell=n. \end{cases}

Here, \(\zeta\) is the Riemann zeta function.

Averaging over all lattices

Corollary. 

Let \(P\) be an \(n\)-dimensional polytope in \(\Lambda_0\) and \(\ell\in \{0,1,\dots, n-2\}\). The average \(\ell\)th Ehrhart coefficient of \(P\), running over all \(\Lambda\supseteq\Lambda_0\) in \(\mathbb{Q}^n\) with finite co-index, approaches

\dfrac{\zeta(n-\ell)}{\zeta(n)} \mathscr{E}_{n,\ell}^{\Lambda_0}(P).

Example. For \(n=3\), the average linear coefficient approaches

\dfrac{\pi^2}{6\zeta(3)}\mathscr{E}_{3,1}^{\Lambda_0}(P) \approx 1.37\cdot\mathscr{E}_{3,1}^{\Lambda_0}(P)

Example. For \(n=4\), the average quadratic coefficient approaches

\dfrac{15}{\pi^2}\mathscr{E}_{4,2}^{\Lambda_0}(P) \approx 1.52\cdot \mathscr{E}_{4,2}^{\Lambda_0}(P)

Growth rate (symplectic edition)

Theorem (Alfes–M–Voll).

For each \(\ell\in \{0,1,\dots, 2n\}\) there exists \(c_{n,\ell}\in\mathbb{R}\) such that 

\sum_{m=1}^{N}\mathcal{C}_{P,\ell}^{\mathsf{C}}(m) \,\sim\, c_{n,\ell}N^{\frac{n+1}{2} + \frac{1+\max(0,\ell-n)}{n}}(\log N)^{\delta_{n,\ell}}.

For \(i,j\in\mathbb{N}_0\), write \(\delta_{i,j}\) for the Kronecker delta symbol.

For \(n=2\) (i.e. in \(4\) dimensions) we completely know \(c_{2,\ell}\):

\begin{aligned} c_{2,0} &= \frac{7\zeta(3)}{8}, & c_{2,1} &= \frac{\zeta(2)^2\zeta(3)}{12\zeta(5)}, & c_{2,2} &= \frac{5}{8}, & c_{2,3} &= \frac{2\zeta(2)^2\zeta(3)}{5\zeta(5)}, & c_{2,4} &= \frac{7\zeta(3)}{12}. \end{aligned}

Averaging over symplectic lattices

We do not know much about \(c_{n,\ell}\), and hence averages over all symplectic lattices, for \(n\geqslant 3\).

When \(n=2\) and \(\ell=1\), the average linear coefficient is 

Corollary.

Let \(P\) be \(2n\)-dimensional in \(\Lambda_0\). The average \(\ell\)th Ehrhart coefficient, running over all symplectic lattices, converges only when \(\ell\in\{0,1,\dots, n-1\}\). Its limit is 

\dfrac{c_{n,\ell}}{c_{n,0}} \mathscr{E}_{2n,\ell}^{\Lambda_0}(P).
\dfrac{\pi^4}{63\zeta(5)}\mathscr{E}_{4,1}^{\Lambda_0}(P).

Quadratic permutation statistics

To understand the average Ehrhart coefficient over all symplectic lattices, we need to at least understand:

F_n(X) = \sum_{w\in S_n}X^{\mathrm{binv}(w) + \mathrm{des}(w)}.

(More specifically: \(\prod_{p\text{ prime}} F_n(p^{-1})\).) The usual suspects:

\begin{aligned} \mathrm{Des}(w) &= \left\{i\in [n-1] ~\middle|~ w(i) > w(i+1) \right\} \\ \mathrm{des}(w) &= \# \mathrm{Des}(w) \\ \mathrm{inv}(w) &= \left\{(i,j) ~\middle|~ 1\leqslant i < j \leqslant n,\ w(i)> w(j) \right\} \end{aligned}

\(\mathrm{binv}\) less studied, connections to lecture hall partitions Savage (2016)

\mathrm{binv}(w) = \mathrm{inv}(w) + \sum_{i\in \mathrm{Des}(w)} \binom{i + 1}{2}

The symplectic Hecke action

These results come from an action of the Hecke ring on the space of unimodular invariant valuations on polytopes.

is a basis for the space of unimodular invariant valuations \(\mathrm{UIV}_{2n}\).

\left\{\mathscr{E}_{2n,0}^{\Lambda_0},\; \mathscr{E}_{2n,1}^{\Lambda_0},\; \dots,\; \mathscr{E}_{2n,2n}^{\Lambda_0}\right\}

An \(\mathbb{R}\)-valued function \(\varphi\) on polytopes is a valuation if

\varphi(P) + \varphi(Q) = \varphi(P\cup Q) + \varphi(P\cap Q)

whenever \(P, Q, P\cap Q, P\cup Q\) are polytopes.

A valuation \(\varphi\) is unimodular invariant if for all \(\alpha\in \mathrm{Aut}(\Lambda_0)\!\leqslant\! \mathrm{Aff}_{2n}(\mathbb{R})\)

\varphi = \varphi\alpha.
\begin{aligned} G^+ &= \mathrm{GSp}_{2n}(\mathbb{Q}_p)\cap \mathrm{Mat}_{2n}(\mathbb{Z}_p), & \Gamma &= \mathrm{GSp}_{2n}(\mathbb{Z}_p) \end{aligned}

The (symplectic) Hecke ring \(\mathcal{H}\) is the set of functions \(G^+ \to \mathbb{Z}\) that:

  • are continuous (thus, locally constant),
  • have compact support,
  • are constant on \(\Gamma\)-double cosets.

\(\mathbb{Z}\)-basis for \(\mathcal{H}\) : characteristic functions on \(\Gamma\)-double cosets.

\mathcal{H} = \mathbb{Z}[T_0, T_1, \dots, T_n].
\begin{aligned} D_0 &= \begin{pmatrix} I_n & \\ & pI_n \end{pmatrix}, & D_k &= \begin{pmatrix} I_{n-k} & & & \\ & pI_k & & \\ & & p^2I_{n-k} & \\ & & & pI_k \end{pmatrix}. \end{aligned}

We define matrices \(D_0,\dots, D_n\in G^+\): for \(k\in \{1,\dots, n\}\),

Let \(T_k\in\mathcal{H}\) be the characteristic function on \(\Gamma D_k\Gamma\). By Krieg (1990),

For \(f\in\mathrm{UIV}_{2n}\), define \(Tf\in\mathrm{UIV}_{2n}\) via

where

\(\Gamma\setminus \Gamma g \Gamma\)  :  set of left cosets whose union is \(\Gamma g \Gamma\),

Extend linearly to define an action of \(\mathcal{H}\) on \(\mathrm{UIV}_{2n}\).

Let \(T\in\mathcal{H}\) be the characteristic function for \(\Gamma g\Gamma\).

What does this action look like on our generators \(T_k\)?

Tf(P) = \sum_{\Gamma h \,\in\, \Gamma \setminus \Gamma g\Gamma} f(h\cdot P)

\(h\cdot P\)  :  given by some integer matrix in \(\Gamma h\) acting on vertices.

Each matrix corresponds to a \(\Gamma\)-left coset.

Colors correspond to \(\Gamma\)-double cosets.

\Gamma\begin{pmatrix} 1 \\ &1 \\ &&p \\ &&&p \end{pmatrix}\Gamma
T_0
\Gamma\begin{pmatrix} 1 \\ &p \\ &&p^2 \\ &&&p \end{pmatrix}\Gamma
T_1
\Gamma\begin{pmatrix} p \\ &p \\ &&p \\ &&&p \end{pmatrix}\Gamma
T_2

Theorem (Alfes–M–Voll).

Let \(k\in \{0,\dots, n\}\) and \(\ell\in\{0, \dots, 2n\}\). There exist polynomials \(\Phi_{n,k,\ell}(Y)\in\mathbb{Z}[Y]\) such that

T_k\mathscr{E}_{2n,\ell} = \Phi_{n,k,\ell}(p) \mathscr{E}_{2n,\ell}.

The polynomials satisfy

\dfrac{\Phi_{n,k,2n-\ell}^{\mathsf{C}}(Y)}{\Phi_{n,k,\ell}^{\mathsf{C}}(Y)} = \begin{cases} Y^{n-\ell} & \text{ if } k = 0, \\ Y^{2(n - \ell)} & \text{ if } k \in \{1,\dots, n\}. \end{cases}

Hecke eigenbases

Type \(\mathsf{A}\) version was done by Gunnells and Rodrigeuz Villegas (2007).

The basis \(\{\mathscr{E}_{2n,0},\dots,\mathscr{E}_{2n,2n}\}\) of \(\mathrm{UIV}_{2n}\) is a simultaneous Hecke eigenbasis in types \(\mathsf{A}\) and \(\mathsf{C}\).

The Satake transform converts a Hecke operator to a polynomial.

Let \(\Omega : \mathcal{H}\otimes \mathbb{Q} \to \mathbb{Q}[x_0,\dots, x_n]\) be the Satake transform and 

From theory of spherical functions on \(p\)-adic groups, simultaneous Hecke eingenfunctions are in bijection with elements of \(\mathbb{C}^{n+1}\).

\psi_{n,\ell} : \mathbb{Q}[x_0,\dots, x_n] \longrightarrow\mathbb{Q}\qquad x_i\longmapsto \begin{cases} p^{\ell} & \text{if }i=0, \\ p^{i} & \text{if }i\in \{1,\dots, n-1\}, \\ p^{n-\ell} & \text{if } i=n. \end{cases}

Theorem (Alfes–M–Voll).

Same hypotheses as previous theorem. For all primes \(p\),

\Phi_{n,k,\ell}(p) = \psi_{n,\ell}(\Omega(T_k)).

Spherical parameters

Explicit eigenvalues \(\Phi_{n,k,\ell}(Y)\)

\(\Phi_{2, k, \ell}\)

\(\Phi_{3, k, \ell}\)

Knowing that the \(\mathscr{E}_{2n,\ell}^{\Lambda_0}\) form a symplectic Hecke eigenbasis means we can take advantage of the theory of spherical functions.

There is a zeta function associated with the \(\ell\)th Ehrhart spherical parameters, \((p^{\ell}, p^1,\dots, p^{n-1},p^{n-\ell})\), as an integral over \(G^+\).

We get a nice interpretation of that integral:

\mathcal{Z}_{n,\ell,p}^{\mathsf{X}}(s) = \sum_{\Gamma g \,\in\, \Gamma\setminus \Gamma G^+\Gamma} \dfrac{\mathscr{E}_{2n,\ell}(g\cdot P)}{\mathscr{E}_{2n,\ell}(P)} \left|\Lambda_{g} : \Lambda_0\right|^{-s}.

EhrhartHecke zeta functions

Lattice

from \(\Gamma g\)

To understand growth of \(\mathcal{C}_{P,\ell}^{\mathsf{X}}\), need to understand \(\mathcal{Z}_{n,\ell,p}^{\mathsf{X}}\) for all \(p\):

This follows from basic facts about symmetric functions and from work of Tamagawa after knowing the type \(\mathsf{A}\) parameters:

(p^1, p^2, \dots, p^{n-1},p^{\ell})
\mathcal{Z}_{n,\ell}^{\mathsf{X}}(s) := \sum_{m=1}^{\infty} \mathcal{C}_{P,\ell}^{\mathsf{X}}(m)\, m^{-s} = \prod_{p\text{ prime}} \mathcal{Z}_{n,\ell,p}^{\mathsf{X}}(s)
\mathcal{Z}_{n,\ell}^{\mathsf{A}}(s) = \zeta(s - \ell) \cdot \zeta(s - 1) \zeta(s-2)\cdots \zeta(s - n + 1)

Lattice enumeration

Theory of spherical functions on \(p\)-adic groups gets us

\(\mathcal{Z}_{n,\ell,p}^{\mathsf{C}}\) as integral

over \(G^+\)

Hecke series at

\((p^{\ell},p^1,\dots, p^{n-1},p^{n-\ell})\)

By applying M–Voll (2024), get 2 facts about \(\mathcal{Z}_{n,\ell,p}^{\mathsf{C}}\) via Hecke series:

Fact 1:

\left. \mathcal{Z}_{n,\ell,p}^{\mathsf{C}}(s) \right|_{p \rightarrow p^{-1}} = (-1)^{n+1} p^{n^2+\ell-2ns} \mathcal{Z}_{n,\ell,p}^{\mathsf{C}}(s)

Fact 2:

Formula for \(\mathcal{Z}_{n,\ell,p}^{\mathsf{C}}\) via enumerating lattices by Hermite and Smith normal forms simultaneously.

\mathcal{Z}_{n,\ell,p}^{\mathsf{C}}(s) = \sum_{I,J\subseteq [n]} \Psi_{n,I,J}(p^{-1}) \prod_{i\in I} \dfrac{p^{\binom{i+1}{2} + i(n-i)}t^n}{1-p^{\binom{i+1}{2} + i(n-i)}t^n} \prod_{j\in J} \dfrac{p^{\binom{j+1}{2} + j(n-j) - n + \ell}t^n}{1-p^{\binom{j+1}{2} + j(n-j) - n + \ell}t^n}

Theorem (Alfes–M–Voll).

Setting \(t = p^{-s}\),

More specifics about \(\Psi_{n,I,J}(Y)\in \mathbb{Z}[Y]\) soon.

\Psi_{n,I,J}(Y) = \text{$Y$-multinomial coefficient} \times \prod (1 - Y^k)^{e_k}

Corollary.

For all \(\ell\in \mathbb{Z}\),

\mathcal{Z}_{n,2n-\ell,p}^{\mathsf{C}}(s) = \mathcal{Z}_{n,\ell,p}^{\mathsf{C}}\left(s - \frac{n-\ell}{n}\right)

We observe remarkable symmetry about \(\ell=n\):

For \(n=2\), it's small enough to be about Riemann zeta functions:

\mathcal{Z}_{2,\ell}^{\mathsf{C}}(s) = \dfrac{\zeta(2s-2)\zeta(2s-3)\zeta(2s-\ell)\zeta(2s-\ell-1)}{\zeta(4s-\ell-2)}

We have lots of data on our

with examples up to \(n=10\) including \(\mathcal{Z}_{n,\ell,p}^{\mathsf{C}}\) and \(F_n\).

For \(n\geqslant 3\), it is not so simple. Again, quadratic permutation statistics:

F_n(X) = \sum_{w\in S_n}X^{\mathrm{binv}(w) + \mathrm{des}(w)}
\mathcal{Z}_{n,0,p}^{\mathsf{C}}(s) = \dfrac{\displaystyle\sum_{w\in S_n}p^{-\mathrm{inv}(w)} \prod_{i\in\mathrm{Des}(w)} p^{\binom{n+1}{2} - \binom{i+1}{2}} t^n}{\displaystyle\prod_{i=0}^n\left(1 - p^{\binom{n+1}{2} - \binom{i+1}{2}}t^n\right)}

Proposition. (\(\ell=0\)):

\mathcal{Z}_{n,n,p}^{\mathsf{C}}(s) = \dfrac{\displaystyle\sum_{w\in S_n}p^{-\mathrm{inv}(w)} \prod_{i\in\mathrm{Des}(w)} p^{\binom{n+1}{2} - \binom{i}{2}} t^n}{\displaystyle\prod_{i=1}^{n+1}\left(1 - p^{\binom{n+1}{2} - \binom{i}{2}}t^n\right)}

Conjecture. (\(\ell=n\)):

\begin{aligned} \mathcal{Z}_{3, 0, p}^{\mathsf{C}}(s) &= \dfrac{1 + pt^3 + p^2t^3 + p^3t^3 + p^4t^3 + p^5t^6}{(1 - t^3)(1 - p^3t^3)(1 - p^5t^3)(1 - p^6t^3)} \\[2.5em] \mathcal{Z}_{3, 1, p}^{\mathsf{C}}(s) &= \dfrac{1 + p^2t^3 + p^4t^3 - p^4t^6 - 2p^5t^6 - 2p^7t^6 - p^8t^6 + p^8t^9 + p^{10}t^9 + p^{12}t^{12}}{(1 - pt^3)(1 - p^3t^3)^2(1 - p^4t^3)(1 - p^5t^3)(1 - p^6t^3)} \\[2.5em] \mathcal{Z}_{3, 2, p}^{\mathsf{C}}(s) &= \dfrac{1 + p^3t^3 + p^4t^3 - p^5t^6 - 2p^6t^6 - 2p^8t^6 - p^9t^6 + p^{10}t^9 + p^{11}t^9 + p^{14}t^{12}}{(1 - p^2t^3)(1 - p^3t^3)(1 - p^4t^3)(1 - p^5t^3)^2(1 - p^6t^3)} \\[2.5em] \mathcal{Z}_{3, 3, p}^{\mathsf{C}}(s) &= \dfrac{1 + p^3t^3 + 2p^4t^3 + p^5t^3 + p^8t^6}{(1 - p^3t^3)(1 - p^5t^3)(1 - p^6t^3)^2} \end{aligned}

Idea of proof for formula

Fix a partition \(\lambda\), with at most \(n\) parts, and composition \(\delta\in \mathbb{N}_0^n\).

Lattices \(\Lambda\subseteq\Lambda_0=\mathbb{Z}_p^n\) with 

\begin{aligned} \mathrm{htimS}(\Lambda) &= \begin{pmatrix} p^{\lambda_1} \\ & p^{\lambda_2} \\ & & \ddots \\ & & & p^{\lambda_{n-1}} \\ & & & & p^{\lambda_n} \end{pmatrix}, & \mathrm{Hermite}(\Lambda) &= \begin{pmatrix} p^{\delta_1} & * & & \dots & *\\ & p^{\delta_2} & * & \dots & * \\ & & \ddots & \ddots & \vdots \\ & & & p^{\delta_{n-1}} & * \\ & & & & p^{\delta_n} \end{pmatrix} \end{aligned}

are determined by semi-standard Young tableaux of shape \(\lambda\) and weight \(\delta\).

Because of spherical parameters, need only fix \(\lambda\) and \(\delta_n\).

In other words, we need a partition \(\lambda\) and a horizontal strip.

Fix rank one lattice \(L\subset\Lambda_0\). Let \(\pi : \Lambda_0 \twoheadrightarrow \Lambda_0/L\). Want \(\Lambda\subseteq \Lambda_0\) such that

\mathrm{type}(\Lambda_0/\Lambda)=\lambda \qquad \#\Lambda\cap L = p^{\delta_n}

Let \(\mu\) be the type of \(\pi(\Lambda)\), so \(\lambda - \mu\) is a horizontal strip, call it \(\sigma\).

I = \{4, 2\}
J = \{5, 2,1\}

Define sets \(I,J\subseteq \{1,\dots, n\}\) via

\(I\) : column lengths containing \(\sigma\)

\(I\) : column lengths containing \(\sigma\)

\(J\) : column lengths avoiding \(\sigma\)

p^{e(I, J, m_I, m_J)}\Psi_{n,I,J}(p^{-1}).

For multiplicities \(m_I\in \mathbb{N}^I\) and \(m_J\in\mathbb{N}^J\), number of such lattices is 

The rest is just geometric progressions 🤙

Summary

The \(\mathscr{E}_{2n,\ell}\) form a symplectic Hecke eigenbasis of \(\mathrm{UIV}_{2n}\).

Theory of spherical functions on \(p\)-adic groups provide tools to study growth of coefficients.

The average \(\ell\)th coefficient of the Ehrhart polynomial...

  • is \(\zeta(n-\ell)/\zeta(n)\) for \(\ell\in\{0,\dots, n-2\}\) over all lattices,
  • converges for \(\ell\in \{0,\dots, 2n/2 - 1\}\) over sympletic lattices.

Converted problem to lattice enumeration to get \(\mathcal{Z}_{n,\ell,p}^{\mathsf{C}}\) explicitly.

  • Two functional equations!
  • And evidence for special \(\ell\)-value: \(\ell=n\).

Thank you!