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On the Geometry of Flag Hilbert–Poincaré Series
for Matroids
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Abstract. We extend the definition of coarse flag Hilbert–Poincaré series to matroids;
these series arise in the context of local Igusa zeta functions associated to hyperplane
arrangements. We study these series in the case of oriented matroids by applying
geometric and combinatorial tools related to their topes. In this case, we prove that
the numerators of these series are coefficient-wise bounded below by the Eulerian
polynomial and equality holds if and only if all topes are simplicial. Moreover this
yields a sufficient criterion for non-orientability of matroids of arbitrary rank.
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1 Introduction

We present the main results from [12], where details and omitted proofs can be found.
The flag Hilbert–Poincaré series associated to a hyperplane arrangement, defined in [13],
is a rational function in several variables connected to local Igusa zeta functions [5]. In
fact, polynomial substitutions of the variables of the flag Hilbert–Poincaré series also
yield motivic zeta functions associated to matroids [10]; see [20] for the topological ana-
log. There are also substitutions yielding so-called ask zeta functions associated to cer-
tain modules of matrices [17]; see [13, Proposition 4.8].

Here we consider a specialization in variables Y and T, called the coarse flag Hilbert–
Poincaré series, which seems to have remarkable combinatorial properties. In [13], it was
shown that for most Coxeter hyperplane arrangements, the numerator of this special-
ization at Y = 1 is equal to an Eulerian polynomial. We generalize this to the setting of
oriented matroids, a combinatorial abstraction of the face structure determined by real
hyperplane arrangements. We show that the numerator can be better understood from
the geometry of the topes, which are analogs of the chambers for real hyperplane ar-
rangements. This settles a question by Voll and the second author [13, Question 1.7] for
the case of real arrangements, asking about which properties of a hyperplane arrange-
ment guarantee the equality to Eulerian polynomials mentioned above.
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1.1 Flag Hilbert–Poincaré series for matroids

Let M be a matroid, with ground set E, and L(M) its lattice of flats, with bottom and
top elements denoted by 0̂ and 1̂, respectively. Relevant definitions concerning matroids
and oriented matroids are given in [12, Section 2]. We call a matroid M orientable if there
exists an oriented matroid whose underlying matroid is M. An orientable matroid M is
simplicial if M has an oriented matroid structure such that the face lattice of every tope
is a Boolean lattice — equivalently, for real hyperplane arrangements every chamber is
a simplicial cone. For example, all Coxeter arrangements are simplicial.

Let µM : L(M) → Z be the Möbius function on L(M), where µM(0̂) = 1 and
µM(X) = −∑X′<X µM(X′). A well-studied invariant of a matroid M is the Poincaré
polynomial

πM(Y) = ∑
X∈L(M)

µM(X)(−Y)r(X),

where r(X) is the rank of X in L(M), viz. one less than the maximum over the number
of elements of all flags from 0̂ to X. If M is realized by a hyperplane arrangement A,
then its Poincaré polynomial captures topological and algebraic properties of A [15].

For a poset P let ∆(P) be the set of flags of P, and let ∆k(P) ⊆ ∆(P) be the set of
flags of size k. If P has a bottom element 0̂ and a top element 1̂ set P = P \ {0̂, 1̂}. The
flag Poincaré polynomial associated to F = (X1 < · · · < Xℓ) ∈ ∆(L(M)), with ℓ ⩾ 0, is the
product of Poincaré polynomials on the minors determined by F,

πF(Y) =
ℓ

∏
k=0

πM/Xk|Xk+1
(Y),

where X0 = 0̂ and Xℓ+1 = 1̂. Here, M/Xk is the contraction of Xk ⊆ E from M, and
M|Xk+1 is the restriction of M to Xk+1 ⊆ E. The lattice L(M/Xk|Xk+1) is isomorphic to
the interval [Xk, Xk+1] in L(M).

Definition 1.1. The coarse flag Hilbert–Poincaré series of a matroid M is

cfHPM(Y, T) =
1

1 − T ∑
F∈∆(L(M))

πF(Y)
(

T
1 − T

)|F|
=

NM(Y, T)
(1 − T)r(M)

.

We call NM(Y, T) the coarse flag polynomial:

NM(Y, T) = ∑
F∈∆(L(M))

πF(Y)T|F|(1 − T)r(M)−1−|F|.
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1.2 Main results

For rational polynomials f (T) = ∑k⩾0 akTk and g(T) = ∑k⩾0 bkTk, we write f (T) ⩽ g(T)
if ak ⩽ bk for all k ⩾ 0. We write f (T) < g(T) to mean f (T) ⩽ g(T) and f (T) ̸= g(T).

The Eulerian polynomials EA
r+1(T) and EB

r+1(T) are equal to the h-polynomials of the
barycentric subdivisions of the boundaries of the r-dimensional simplex and the cross-
polytope, respectively [16, Theorem 11.3]. The Eulerian polynomials are also defined by
Coxeter-theoretic descent statistics [16, Section 11.4]. In [13, Theorem D], it was shown
that for all Coxeter arrangements A of rank r, without an E8-factor, NA(1, T)/πA(1) =
EA

r (T). The next theorem generalizes this result.

Theorem 1.2. Let M be an orientable matroid of rank r. Then

EA
r (T) ⩽

NM(1, T)
πM(1)

, (1.1)

and equality holds if and only if M is simplicial. Moreover,

NM(1, T−1) = Tr−1NM(1, T).

The key insight in the proof for Theorem 1.2 is that in the orientable case NM(1, T)
is a sum of h-polynomials. Each of the summands is determined by the topes of M; see
Proposition 3.2. A byproduct of Theorem 1.2 is a sufficient condition for non-orientability
of matroids. The rank 3 case yields an inequality concerning the the number of rank 2
flats above every element in M.

Corollary 1.3. Assume M is a simple matroid with rank 3, and suppose c is the number of rank
2 flats of M and s the sum of their sizes. If 3(c − 1) < s, then M is non-orientable.

It is known that the Fano matroid is non-orientable, which is also shown by Corol-
lary 1.3 since it has 7 lines, each with 3 points. There are a number of sufficient conditions
for the non-orientability of matroids. Based on experiments using the database of non-
orientable matroids [14], we report that the condition in Corollary 1.3 is independent
from the sufficient condition in [6] for rank 3 matroids; see also [2, Proposition 6.6.1(i)].
Moreover, Corollary 1.3 is related to Corollary 2.6 in [7] where Cuntz and Geis proved
that a rank 3 arrangement is simplicial if and only if its underlying matroid satisfies
3(c − 1) = s in the notation above.

The lower bound in (1.1) raises the following question. How large or how small
can the coefficients of the numerator of cfHPM(1, T)/πM(1) be? All of our results and
computations suggest the following.

Conjecture 1.4. For all matroids M of rank r ⩾ 3,

(1 + T)r−1 <
NM(1, T)

πM(1)
< EB

r (T).
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We note that EA
1 (T) = EB

1 (T) = 1 and EA
2 (T) = EB

2 (T) = 1 + T, and all matroids of
rank 1 or 2 are both orientable and simplicial. For orientable matroids, the lower bound
of Conjecture 1.4 holds by Theorem 1.2. Moreover, the upper bound in Conjecture 1.4 is
reminiscent of similar “ f -vector” bounds proved in [8, 19].

Theorem 1.5.

(1) If Conjecture 1.4 holds, then the bounds are sharp.

(2) Conjecture 1.4 holds for all matroids of rank 3. Moreover for all orientable matroids, the
upper bound holds for the linear term of the polynomials, so Conjecture 1.4 holds for all
orientable matroids of rank 4.

Remark 1.6. To prove Theorem 1.5 (1) we consider two extremal families of matroids for
the lower and upper bounds: these are the projective geometries and uniform matroids,
respectively. See [12, Section 5] for details.

In fact, more is known to hold for NM(Y, T) in the case where r(M) ⩽ 3. We prove,
in Proposition 2.2, that the numerator is nonnegative, palindromic, and when Y = 1
real-rooted. In particular, Conjecture E from [13] holds for all central hyperplane ar-
rangements with rank at most 3. We are also interested in whether or not these three
properties hold for the numerator of NM(Y, T) for all matroids of rank larger than 3. For
oriented matroids of rank 4, the polynomial NM(1, T) is real-rooted, which follows from
Theorem 1.2. This raises the following general question.

Question 1.7. Is the polynomial NM(1, T) real-rooted for all matroids M?

Brenti and Welker asked whether the h-polynomial of the barycentric subdivision of
a general polytope is real-rooted [3]. In the case of real hyperplane arrangements and
their associated zonotopes, this question is related to Question 1.7 via our geometric
interpretation of NM(1, T) although the precise connection is not yet well understood.

We give parts of the proof for Theorem 1.2 in Section 3. Section 2 is devoted to general
matroids of rank 3. There we also describe a pair of real hyperplane arrangements with
the same coarse flag polynomial and different underlying matroids (Remark 2.3), an-
swering a question of Voll and the second author [13]. We conclude with some examples
in Section 4.

2 Matroids of rank 3

We explicitly determine the coarse flag Hilbert–Poincaré series for matroids of rank 3.
First we require the next lemma, which follows from the definition of the Möbius func-
tion.
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Lemma 2.1. Let M be a simple rank 3 matroid on E = [n]. Let c be the number of rank 2 flats
of M and s the sum of their sizes. Then

πM(Y) = 1 + nY + (s − c)Y2 + (1 + s − n − c)Y3

=
(

1 + (n − 1)Y + (1 + s − n − c)Y2
)
(1 + Y).

Proposition 2.2. For a simple rank 3 matroid M with ground set of size n, let c be the number
of rank 2 flats of M and s the sum of their sizes. Then

NM(Y, T) = πM(Y) + φM(Y)T + Y3πM(Y−1)T2,

where

φM(Y) = n + c − 2 + (2s − n + c)Y + (2s − n + c)Y2 + (n + c − 2)Y3.

Remark 2.3. With Proposition 2.2, we answer a question of Voll and the second author [13,
Question 6.2], about whether there exists a distinct pair of arrangements with the same
coarse flag polynomial. We describe a pair A and B of real arrangements in Figure 2.1
which we found in the database of [1] and are given by:

A : xyz(x + y)(x − y)(x + 2y)(x + z)(y + z)(x + y + z) = 0,
B : xyz(x + y)(x + 2y)(x − 2y)(x + z)(2y + z)(2x + 2y + z) = 0.

They both contain nine hyperplanes with c = 15 and s = 39 using the above notation.
The arrangement A has exactly two planes with three lines of intersection, whereas B
has exactly one such plane, so they are inequivalent.

Corollary 2.4. If M is a matroid of rank not larger than 3, then NM(Y, T) has nonnegative
coefficients and satisfies

NM(Y−1, T−1) = Yr(M)Tr(M)−1NM(Y, T).

Moreover, the polynomial NM(1, T) is real-rooted.

Proof. This is clear if r(M) = 1, and we assume that M is a simple matroid. If M has
rank 2, then M ∼= U2,n, where n is the size of the ground set of M. Then,

NU2,n(Y, T) = (1 + Y)(1 + (n − 1)Y) + (1 + Y)(n − 1 + Y)T,

which satisfies the three properties.
If r(M) = 3, then from Proposition 2.2, NM(Y, T) satisfies

NM(Y−1, T−1) = Y−3T−2NM(Y, T).
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(A) The arrangement A. (B) The arrangement B.

Figure 2.1: Two projectivized pictures of the arrangements A and B.

By a classical result of de Bruijn and Erdős [4], the number of elements is not larger than
the number of rank 2 flats, so c ⩾ n. Thus, NM(Y, T) has nonnegative coefficients. The
discriminant of NM(Y, T) as a polynomial in T is(

(c + n)2(1 − Y)2 − 4s(1 − (c + 1)Y + Y2)
)
(1 + Y)4,

which is positive at Y = 1.

Lemma 2.5. For all matroids M with rank 3,

(1 + T)2 <
NM(1, T)

πM(1)
< EB

3 (T) = 1 + 6T + T2.

Proof. Without loss of generality, M is a simple matroid. By Proposition 2.2,

NM(1, T)
πM(1)

= 1 +
(

2 +
4(c − 1)

s − (c − 1)

)
T + T2, (2.1)

where c = |L2(M)| and s = ∑X∈L2(M) |X|. Since s ⩾ 2c,

0 <
4(c − 1)

s − (c − 1)
< 4.

We note that equation (2.1) together with Theorem 1.2 proves Corollary 1.3.

3 Oriented matroids

Central to the proof of Theorem 1.2 is the face lattice of an oriented matroid M = (E, C).
For an oriented matroid M, we let C be the set of covectors of M, F (C) the face lattice,
T (C) the set of topes, and z : C → 2E the zero map sending C to {e ∈ E | Ce = 0}.
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For a poset P, let ∆̂(P), resp. ∆̂k(P), be the set of nonempty flags, resp. flags of length
k, ending at a maximal element of P.

Lemma 3.1. Let M = (E, C) be an oriented matroid of rank r. Then for all k ∈ [r],∣∣∣∆̂k(F (C))
∣∣∣ = ∑

F∈∆k−1(L(M))

πF(1).

For a finite simplicial complex Σ, we write f (Σ) := ( f0, . . . , fd) ∈ Nd+1
0 for the f -vector

of Σ, where fk is the number of k-subsets in Σ—equivalently, the number of (k − 1)-
dimensional faces. Let f (Σ; T) = ∑d

k=0 fkTk be the f -polynomial of Σ, and let h(Σ; T) :=
(1 − T)d f (Σ; T/(1 − T)), which is the h-polynomial associated to Σ. The coefficients of
h(Σ; T) yield the h-vector h(Σ) of Σ.

For a tope τ ∈ T (C), we define a simplicial complex Σ(τ) := ∆((0̂C , τ)), which is the
set of flags in the open interval (0̂C , τ) in F (C) ordered by refinement. We write Σk(τ)
for the flags of Σ(τ) with length k. If M is realizable over R, then Σ(τ) is the barycentric
subdivision of the boundary of the chamber determined by τ.

Proposition 3.2. Let M = (E, C) be an oriented matroid of rank r. Then

NM(1, T) = ∑
τ∈T (C)

h(Σ(τ); T).

Proof. The flags in ∆̂(F (C)) are partitioned into subsets ∆̂((0̂C , τ]) for τ ∈ T (C), and the
latter are in bijection with the flags in Σ(τ). Thus,∣∣∣∆̂(F (C))

∣∣∣ = ∑
τ∈T (C)

|Σ(τ)| .

Applying Lemma 3.1, we have

∑
τ∈T (C)

h(Σ(τ); T) =
r−1

∑
k=0

∑
τ∈T (C)

|Σk(τ)| Tk(1 − T)r−k−1

=
r−1

∑
k=0

∑
F∈∆(L(M))
|F|=k−1

πF(1)Tk(1 − T)r−k−1 = NM(1, T).

In order to prove the lower bound in Theorem 1.2, we work with the cd-index of an
(Eulerian) poset. Details on the cd-index can be found in [18, Ch. 3.17].

Proposition 3.3. Let M = (E, C) be an oriented matroid of rank r. Then for all τ ∈ T (C),
EA

r (T) ⩽ h(Σ(τ); T),

and equality holds if and only if τ is a simplicial tope.

Proof of Theorem 1.2. The first statement is proved using Propositions 3.2 and 3.3. Since
β[0̂C ,τ](S) = β[0̂C ,τ]([r − 1] \ S) by [18, Corollary 3.16.6], it follows that hk(Σ(τ)) =

hr−k−1(Σ(τ)). Hence, the second statement follows by Proposition 3.2.
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3.1 The upper bound for the linear term

In this section, we prove that NM(1, T), for an oriented matroid M = (E, C) of rank
4, is bounded above coefficient-wise by πM(1)EB

r (T). The next lemma determines the
coefficients of NM(1, T) in terms of the face lattice of M. To simplify notation, we define

fk(C) :=
∣∣∣∆̂k+1

(
F (C)

)∣∣∣ = ∣∣{F ∈ ∆k+1
(
F (C)

)
: F ends at a tope

}∣∣ .

For f (T) = ∑k⩾0 akTk, let f (T)[Tk] = ak.

Lemma 3.4. Let M = (E, C) be an oriented matroid of rank r. For ℓ ∈ [r − 1]0,

NM(1, T)[Tℓ] =
ℓ

∑
k=0

(−1)ℓ−kfk(C)
(

r − k − 1
ℓ− k

)
.

Proposition 3.5. If M is an orientable matroid of rank r ⩾ 3, then

NM(1, T)[T] < πM(1)EB
r (T)[T].

If M is rank 4, then NM(1, T) < πM(1)EB
4 (T).

Proof. From Theorem 1.2, NM(1, T) has degree r − 1 and is palindromic. Therefore it
suffices to just prove the inequality between the linear coefficients.

Suppose C is a set of covectors such that M = (E, C) is an oriented matroid. The
number f1(C) counts the flags of length two in F (C) which end at a tope, and f0(C) =
|T (C)|. Using Proposition 4.6.9 of [2], we have the following inequality

f1(C) <
r−2

∑
j=0

2r−1−j
(

r − 1
j

)
|T (C)|. (3.1)

Using [16, Section 13.1], one can express the terms of EB
r (T) in terms of alternating sums.

The linear term is, thus, 3r−1 − r.

NM(1, T)[T] = f1(C)− (r − 1)f0(C) (Lemma 3.4)

<

(
r−2

∑
j=0

2r−1−j
(

r − 1
j

)
|T (C)|

)
− (r − 1)|T (C)| (Equation 3.1)

= (3r−1 − 1)|T (C)| − (r − 1)|T (C)|
= πM(1)EB

r [T].

The penultimate equality is seen by counting, in two different ways, the number of ways
to color r − 1 balls with three colors.
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4 Examples

4.1 A uniform matroid with rank 3

Consider the matroid M = U3,4. One set of covectors is defined by the real arrangement
given by xyz(x + y + z) = 0. There are 14 = 24 − 2 topes since (+++−) and (−−−+)
are not topes. For instance, the inequality system given by x > 0, y > 0, z > 0 and
x + y + z < 0 is infeasible. The topes with an even number of + symbols are triangles,
and the topes with an odd number of + symbols are squares. Therefore, there are 8
triangles and 6 squares, so by Proposition 3.2,

NM(1, T) = 8(1 + 4T + T2) + 6(1 + 6T + T2) = 14 + 68T + 14T2.

By Proposition 2.2, the coarse numerator for M is given by

NM(Y, T) = 1 + 4Y + 6Y2 + 3Y3 + (8 + 26Y + 26Y2 + 8Y3)T

+ (3 + 6Y + 4Y2 + Y3)T2.

4.2 A uniform matroid with rank 4

Three non-Coxeter, uniform matroids in [13] had the seemingly rare property that

NM(1, T)/πM(1) ∈ Z[T].

These are the uniform matroids Ur,n for (r, n) ∈ {(4, 5), (4, 7), (4, 8)}, and we consider
(r, n) = (4, 7). From Proposition 3.2, this integrality condition is equivalent to the inte-
grality of the average of the h-vectors. To do this computation, we used the hyperplane
arrangement package [11] of polymake [9].

The matroid U4,7 can be realized as a hyperplane arrangement in R4, whose hyper-
planes are given by

x1x2x3x4(x1 + x2 + x3 + x4)(x1 + 2x2 + 3x3 + 4x4)(x1 + 3x2 + 2x2 + 5x4) = 0.

There are five different polytopes corresponding to chambers of this arrangement, and
they can be seen in Figure 4.1. The chambers are 4-dimensional cones over these poly-
topes.

There are a total of 84 chambers; 22 are simplices, 22 are triangular prisms, 30 are
the polytopes seen in Figure 4.1(C), six are the polytopes seen in Figure 4.1(D), and
four are truncated simplices as seen in Figure 4.1(E). The h-vectors of the barycentric
subdivisions are palindromic, and the first values different from 1 are 11, 17, 23, 29, and
29 respectively.
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(A) (B) (C) (D) (E)

Figure 4.1: The five different polytopes arising as chambers in the U4,7 arrangement.

Thus,

NU4,7(1, T) = 22(1 + 11T + 11T2 + T3) + 22(1 + 17T + 17T2 + T3)

+ 30(1 + 23T + 23T2 + T3) + (4 + 6)(1 + 29T + 29T2 + T3).

This has the nice coincidence that

NU4,7(1, T) = 84(1 + 19T + 19T2 + T3).

Curiously, (1, 19, 19, 1) is the h-vector of the barycentric subdivision of the pyramid over
a pentagon.
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