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Abstract. Motivated by a conjecture concerning Igusa local zeta functions for intersec-
tion posets of hyperplane arrangements, we introduce and study the Poincaré-extended
ab-index, which generalizes both the ab-index and the Poincaré polynomial. For posets
admitting R-labelings, we give a combinatorial description of the coefficients of the
extended ab-index, proving their nonnegativity. In the case of intersection posets of
hyperplane arrangements, we prove the above conjecture of the second author and Voll
as well as another conjecture of the second author and Kühne. We also define the
pullback ab-index, generalizing the cd-index of face posets for oriented matroids. Our
results recover, generalize and unify results from Billera–Ehrenborg–Readdy, Bergeron–
Mykytiuk–Sottile–van Willigenburg, Saliola–Thomas, and Ehrenborg. This connection
allows us to translate our results into the language of quasisymmetric functions, and—in
the special case of symmetric functions—pose a conjecture about Schur positivity. This
conjecture was strengthened and proved by Ricky Liu, and the proof appears as an
appendix.

1. Introduction

Grunewald, Segal, and Smith introduced the subgroup zeta function of finitely-generated
groups [17], and Du Sautoy and Grunewald gave a general method to compute such zeta
functions using p-adic integration and resolution of singularities [12]. This motivated
Voll and the second author to consider the setting where the multivariate polynomials
factor linearly and found that the p-adic integrals are specializations of multivariate
rational functions depending only on the combinatorics of the corresponding hyperplane
arrangement [22]. After a natural specialization, its denominator greatly simplifies, and
they conjecture that the numerator polynomial has nonnegative coefficients.

In this work, we prove their conjecture, which is related to the poles of these zeta
functions; see Remark 2.27. Specifically, we reinterpret these numerator polynomials by
introducing and studying the (Poincaré-)extended ab-index, a polynomial generalizing
both the Poincaré polynomial and ab-index of the intersection poset of the arrangement.
These polynomials have been studied extensively in combinatorics, although from different
perspectives. The coefficients of the Poincaré polynomial have interpretations in terms of
the combinatorics and the topology of the arrangement [8, Section 2.5]. The ab-index,
on the other hand, carries information about the order complex of the poset and is
particularly well-understood in the case of face posets of oriented matroids—or, more
generally, Eulerian posets. In those settings, the ab-index encodes topological data via
the flag f -vector [1].

We study the extended ab-index in the generality of graded posets admitting R-labelings.
This class of posets includes intersection posets of hyperplane arrangements and, more
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generally, geometric lattices and geometric semilattices. We show that the extended
ab-index has nonnegative coefficients by interpreting them in terms of a combinatorial
statistic. This generalizes statistics given for the ab-index by Billera, Ehrenborg, and
Readdy [5] and for the pullback ab-index (defined below) by Bergeron, Mykytiuk, Sottile
and van Willigenburg [4]. This interpretation proves the aforementioned conjecture [22],
as well as a related conjecture from Kühne and the second author [21].

We also describe a close relationship between the Poincaré polynomial and the ab-
index by showing that the extended ab-index can be obtained from the ab-index by a
suitable substitution. This recovers, generalizes and unifies several results in the literature.
Concretely, special cases of this substitution were observed by Billera, Ehrenborg and
Ready for lattices of flats of oriented matroids [5], by Saliola and Thomas for lattices of
flats of oriented interval greedoids [26], and by Ehrenborg for distributive lattices [13].
In agreement with those special cases, our substitution allows us to study the pullback
ab-index, a polynomial in noncommuting variables c = a+ b and 2d = 2(ab+ ba) with
connections to the combinatorics of P -partitions and quasisymmetric functions from [27]
and [4, Section 7]. We conjecture that our substitution (now defined on quasisymmetric
functions) restricts to a map on symmetric function, and that the image of a Schur
function is Schur positive.

The remainder of this paper is organized as follows. In Section 2, we introduce the
main definitions (Section 2.1) and state the main results (Section 2.2) of the paper. We
then discuss in Section 3 how these recover, generalize and unify results in the context of
P -partitions and quasisymmetric functions. The proofs are then presented in Sections 4
and 5.

Acknowledgements. This work was initiated at the Combinatorial Coworkspace in
March 2022 and continued at the conference Geometry Meets Combinatorics the following
September in Bielefeld. We thank the organizers of both events for bringing us together
and for fostering collaborative work environments. We also thank Aram Dermenjian,
Martina Juhnke, and Vic Reiner for useful discussions and Richard Ehrenborg for drawing
our attention to [13]. We finally thank Darij Grinberg for pointing us to the extended
abstract “The algebra of extended peaks” [16]. We believe that they also arrived at the
same polynomials in the case of distributive lattices.

2. The Poincaré-Extended ab-index

2.1. Main definitions. Unless otherwise specified, P is a finite graded poset of rank n.
That is, P is a finite poset with unique minimum element 0̂ of rank 0 and unique maximum
element 1̂ of rank n such that rank(X) is equal to the length of any maximal chain from 0̂
to X. The Möbius function µ of P is given by µ(X,X) = 1 for all X ∈ P and
µ(X,Y ) = −

∑
X≤Z<Y µ(X,Z) for all X < Y in P . The Poincaré polynomial of P is

Poin(P ; y) =
∑
X∈P

µ(0̂,X) · (−y)rank(X) ∈ Z[y].

The chain Poincaré polynomial of a chain C =
{
C1 < · · · < Ck

}
in P is

PoinC(P ; y) =
k∏

i=1

Poin([Ci, Ci+1]; y) ∈ Z[y],
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where we set Ck+1 = 1̂. By taking the singleton chain {0̂}, we recover the usual Poincaré
polynomial, Poin(P ; y) = Poin{0̂}(P ; y). The set of ranks of a given chain C is given by

Rank(C) = {rank(Ci) | 1 ≤ i ≤ k} .
We often consider polynomials in noncommuting variables a and b with coefficients
being polynomials in Z[y]. For a subset S ⊆ {i, i + 1, . . . , j}, we write mS = mi . . .mj

for the monomial with mk = b if k ∈ S and mk = a if k /∈ S and we similarly write
wtS = wi . . . wj for the polynomial with

(1) wk =

{
b if k ∈ S,

a− b if k /∈ S .

The supersets {i, i+ 1, . . . , j} are understood from the context as the set of all indices
that can possibly be contained in the set S. In case of ambiguity, we in addition identify
the considered superset. For a chain C in P , we also set mC = mRank(C) and wtC = wtRank(C).
The following is the main object of study of this paper.

Definition 2.1. The (Poincaré-)extended ab-index of P is

exΨ(P ; y, a,b) =
∑

C chain in P\{1̂}

PoinC(P ; y) · wtC ∈ Z[y]⟨a,b⟩ ,

where wtC = w0 · · ·wn−1 is given in Equation (1).

Since P has a unique minimum, we always have Poin(P ; 0) = 1, implying

exΨ(P ; 0, a,b) =
∑

C chain in P\{1̂}

wtC .

This recovers1 the ab-index

Ψ(P ; a,b) = exΨ(P ; 0, a,b) .

Example 2.2. We compute the extended ab-index of the poset L drawn below on the
left. On the right, we collect the relevant data.

1̂

α1 α2 α3

0̂

C PoinC(L; y) Rank(C) wtC

{} 1 {} (a− b)2

{0̂} 1 + 3y + 2y2 {0} b(a− b)

{αi} 1 + y {1} (a− b)b

{0̂ < αi} (1 + y)2 {0, 1} b2

The extended ab-index and its specialization to the ab-index are thus

exΨ(L; y, a,b) = (a− b)2+(1 + 3y + 2y2)b(a− b)+3 · (1 + y)(a− b)b+3 · (1 + y)2b2

= a2 + (3y + 2y2)ba+ (2 + 3y)ab+ y2b2,

Ψ(L; a,b) = a2 + 2ab .

Remark 2.3. Taking chains C in P \ {1̂}, rather than in P , is a harmless reduction in
the definition of the extended ab-index since PoinC(P ; y) = PoinC∪{1̂}(P ; y). If we consider

both C and C ∪ {1̂} separately as summands of exΨ(P ; y, a,b), we would need to consider
weights wt+C = w0 · · ·wn taking also the n-th position into account. We would have the

1This is actually a mild variant of the usual definition of the ab-index; see Remark 2.4 below.
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two terms PoinC(P ; y) ·wt+C and PoinC∪{1̂}(P ; y) ·wt+C∪{1̂}, differing only in the last entry of

the weight, so their sum is PoinC(P ; y) ·wtC ·a. This argument holds for all chains, proving

(2) exΨ(P ; y, a,b) · a =
∑

C chain in P

PoinC(P ; y) · wt+C .

Remark 2.4. In the case of the ab-index, a similar argument to the one in Remark 2.3
implies that we could further restrict to chains in P \ {0̂, 1̂}. Therefore, we have

(3) Ψ(P ; a,b) = a ·

 ∑
C chain in P\{0̂,1̂}

wt−C

 ,

where wt−C = w1 . . . wn−1 as neither 0 nor n can appear in Rank(C). The expression
in the parentheses recovers the usual definition of the ab-index as given, for example,
in [1, Section 2]. Using additional information, the extended ab-index admits a similar
property to that in Equation (3), which is given in Corollary 2.23.

The fact that 1̂ is included in every chain in the computation of the chain Poincaré
polynomial is inspired by the setting of hyperplane arrangements. A (central, real)
hyperplane arrangement A is a finite collection of hyperplanes in Rd, all of which
have a common intersection. The lattice of flats L of A is the poset of subspaces of Rd

obtained from intersections of subsets of the hyperplanes, ordered by reverse inclusion.
The open, connected components of the complement Rd \ A are called (open) chambers.
The set of (closed) faces Σ is the set of closures of chambers of A, together with all
possible intersections of closures of chambers (ignoring intersections which are empty).
This set comes equipped with a natural partial order by reverse inclusion, and for this
reason we refer to Σ as the face poset of A. There is an order-preserving, rank-preserving
surjection supp : Σ ↠ L sending a face to its affine span [8, Proposition 4.1.13]. This map
extends to chains, and the fiber sizes are given, for C = {C1 < · · · < Ck} ⊆ L, by

(4) #supp−1(C) =
k∏

i=1

Poin([Ci, Ci+1]; 1) = PoinC(P ; 1),

with Ck+1 = 1̂; see [8, Proposition 4.6.2]. This is the key motivation for the next definition.

Definition 2.5. The pullback ab-index of P is

Ψpull(P ; a,b) = exΨ(P ; 1, a,b).

Let Σ be the face poset and L the lattice of flats of a real central hyperplane arrangement.
Since Σ may not have a unique minimum element, we formally add a minimum element 0̂
and let Σ∪ {0̂} be the resulting poset. Now, Equation (4) relates the ab-index of the face
poset and the pullback ab-index of the lattice of flats by

(5) Ψ(Σ ∪ {0̂}; a,b) = a ·Ψpull(L; a,b) .
Note that this corresponds to the evaluation of exΨ(Σ ∪ {0̂}; y,a,b) at y = 0 to the
evaluation of exΨ(L; y, a,b) at y = 1. Equation (4) and thus also Equation (5) hold indeed
in the more general context of oriented matroids.

Example 2.6. The pullback ab-index of the poset from Example 2.2 is

Ψpull(L; a,b) = exΨ(L; 1, a,b) = a2 + 5ba+ 5ab+ b2 .

Consider the arrangement of three lines in the plane through a nonempty intersection as
shown below on the left in a way that emphasizes its face structure. Its lattice of flats is
the poset L from Example 2.2. To the right, we draw its face poset Σ with 0̂ included.
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The ab-index of Σ ∪ {0̂} can be computed as

a3 + 5aba+ 5a2b+ ab2 = a(a2 + 5ba+ 5ab+ b2).

As seen above, this equals a ·Ψpull(L; a,b).

2.2. Main results. The main results of this paper concern R-labeled posets. These form a
large family of posets including distributive lattices, semimodular (in particular geometric)
lattices, and noncrossing partition lattices. In order to state Theorem 2.7, we introduce
a combinatorial statistic on maximal chains of these posets and use this to describe the
extended ab-index. In Section 3, we briefly discuss this combinatorial statistic for general
edge labeled graded posets.

A function λ from the set of cover relations X ⋖ Y in P into the positive integers is
an R-labeling of P if, for every interval [X,Y ] in P , there is a unique maximal chain
X = Mi ⋖Mi+1 ⋖ · · ·⋖Mj = Y such that

λ(Mi,Mi+1) ≤ λ(Mi+1,Mi+2) ≤ · · · ≤ λ(Mj−1,Mj).

We say a poset P is R-labeled if it is finite, graded, and admits an R-labeling. Throughout
this section, we consider R-labeled posets with a fixed R-labeling λ.

The first result is a combinatorial statistic describing the coefficients of the extended ab-
index which witnesses their nonnegativity. It generalizes [5, Corollary 7.2] and also reproves
it using purely combinatorial arguments. For a maximal chainM = {M0⋖M1⋖· · ·⋖Mn}
in P , define the monomial u(M) = u1 · · ·un in a,b given by u1 = a and for i ∈ {2, . . . ,n}
by

(6) ui =

{
a if λ(Mi−2,Mi−1) ≤ λ(Mi−1,Mi) ,

b if λ(Mi−2,Mi−1) > λ(Mi−1,Mi) .

Now, let E ⊆ {1, . . . ,n}, viewed as a subset of the cover relations in the chain M. Define
the monomial u(M,E) = v1 . . . vn in a,b to be obtained from u(M) by

• replacing all variables a by b at positions i ∈ {1, . . . ,n} if i ∈ E and
• replacing all variables b by a at positions i ∈ {2, . . . ,n} if i− 1 ∈ E.

In symbols this means, for the given position i ∈ {1, . . . ,n}, that

vi = a if

{
ui = a, i /∈ E or

ui = b, i− 1 ∈ E ,

vi = b if

{
ui = a, i ∈ E or

ui = b, i− 1 /∈ E .
5



We have, in particular, u(M, ∅) = u(M) and

(7) v1 =

{
a if 1 /∈ E ,

b if 1 ∈ E .

Theorem 2.7. Let P be an R-labeled poset of rank n. Then

exΨ(P ; y, a,b) =
∑

(M,E)

y#E · u(M,E)

where the sum ranges over all maximal chains M in P and all subsets E ⊆ {1, . . . ,n}.

When P is a geometric lattice, setting y = 0 in Theorem 2.7 recovers [5, Corollary 7.2].
Specifically

(8) Ψ(P ; a,b) =
∑
M

u(M) ,

where the sum ranges over all maximal chains M = {M0 ⋖ · · ·⋖Mn}.

Example 2.8. The poset from the previous examples admits the R-labeling given below
on the left. On the right, we collect the relevant data to compute the combinatorial
description of the extended ab-index.

1̂

α1 α2 α3

0̂

1 2 3

2 1 1

E y#E 0̂⋖ α1 ⋖ 1̂ 0̂⋖ α2 ⋖ 1̂ 0̂⋖ α3 ⋖ 1̂

{} 1 aa ab ab
{1} y ba ba ba
{2} y ab ab ab
{1, 2} y2 bb ba ba

Then exΨ(L; y, a,b) is obtained as

exΨ(L; y, a,b) = aa+ (3y + 2y2)ba+ (2 + 3y)ab+ y2bb ,

in agreement with our computation in Example 2.2.

Theorem 2.7 has many consequences, which we formulate in eight corollaries. The most
important gives a substitution sending the ab-index to the extended ab-index—meaning
that the extended ab-index is already encoded in the ab-index.

Corollary 2.9. For an R-labeled poset P , we have

exΨ(P ; y, a,b) = ω
(
Ψ(P ; a,b)

)
where the substitution ω replaces all occurrences of ab with ab+ yba+ yab+ y2ba and
then simultaneously replaces all remaining occurrences of a with a+ yb and b with b+ ya.

The proof of Corollary 2.9 relies on the fact that P is R-labeled. We suspect however
that this is true more generally.

Conjecture 2.10. For any finite and graded poset P , we have

exΨ(P ; y, a,b) = ω
(
Ψ(P ; a,b)

)
.

We have tested this conjecture on all graded posets of cardinality at most 10 and also
on many larger graded posets.
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Example 2.11. We have seen that the poset L from Example 2.2 has ab-index

Ψ(L; a,b) = exΨ(L, 0, a,b) = aa+ 2ab .

Applying ω gives

ω
(
Ψ(L; a,b)

)
= (a+ yb)2 + 2(ab+ yba+ yab+ y2ba) = exΨ(L; y, a,b) ,

which coincides with the extended ab-index we computed in Example 2.8.

Using Corollary 2.9, the monomials u(M,E) in Theorem 2.7 capture the same informa-
tion as the generalized descent sets on réseaux as defined by Bergeron, Mykytiuk, Sottile,
and van Willigenburg in [4, Section 7] in the context of quasisymmetric functions. The
next corollary can be seen as a refinement of [27, Proposition 2.2] and of [4, Theorem 7.2],
stated in terms of ab-indices rather than quasisymmetric functions. Both can be seen
as the special case for the pullback ab-index: the first for enriched P -partitions and
the second for general edge-labeled graded posets, compare with Section 3. We start by
describing their relevant combinatorics in the present notation. Let M be a maximal
chain with u(M) = u1 . . . un, and let

Peak(M) =
{
i ∈ {2, . . . ,n} | ui−1 = a,ui = b

}
denote its peak set. A set S ⊆ {1, . . . ,n} is then M-peak-covering if

Peak(M) ⊆ S ∪ {i+ 1 | i ∈ S} ,

and let b-out(M,S) be the number of positions i ∈ {1, . . . ,n} \ S for which ui = b.

Corollary 2.12. For an R-labeled poset P of rank n, we have

exΨ(P ; y, a,b) =
∑
(M,S)

(1 + y)#S · yb-out(M,S) · wtS ,

where the sum ranges over all maximal chains M and all M-peak-covering subsets
S ⊆ {1, . . . ,n} and where wtS = w1 . . . wn as given in Equation (1).

Example 2.13. For the poset L from Example 2.2, using Corollary 2.12 we compute

exΨ(L; y, a,b) = (a− b)2︸ ︷︷ ︸
S=∅

+(1 + y) · b(a− b)︸ ︷︷ ︸
S={1}

+(1 + y) · (a− b)b︸ ︷︷ ︸
S={2}

+(1 + y)2 · b2︸ ︷︷ ︸
S={1,2}

+ 2 ·
(
(1 + y) · y · b(a− b)︸ ︷︷ ︸

S={1}

+(1 + y) · (a− b)b︸ ︷︷ ︸
S={2}

+(1 + y)2 · b2︸ ︷︷ ︸
S={1,2}

)
where the sum in the first row corresponds to the maximal chain M = {0̂⋖ α1 ⋖ 1̂} with
u(M) = aa and Peak(M) = ∅. The condition of being M-peak-covering is thus vacuous,
and we sum over all S ⊆ {1, 2}. The sum in the second row corresponds to the two
maximal chains M = {0̂⋖ αi ⋖ 1̂} for i ∈ {2, 3} with u(M) = ab and Peak(M) = {2}.
In this case, the condition of being M-peak-covering excludes the empty set, and we sum
over all nonempty subsets S ⊆ {1, 2}. Observe that only in the second row, we have the
second letter of u(M) equal to b, so the only set for which b-out(M,S) ̸= 0 is S = {1},
and in this case b-out(M,S) = 1. The above sum further expands to

exΨ(L; y, a,b) = (aa+ yba+ yab+ y2bb) + 2
(
(y + y2)ba+ (1 + y)ab

)
= aa+ (3y + 2y2)ba+ (2 + 3y)ab+ bb

as expected.
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Another consequence of Corollary 2.9 is that the Poincaré polynomial of P is in fact
encoded in its ab-index. To see this, we define another substitution ι, which deletes the
first letter from every ab-monomial, so ι(a3ba+(1+ y)ba) = a2ba+(1+ y)a for example.
This gives us a way to obtain the Poincaré polynomial from the ab-index, a result which
is similar in spirit to [5, Proposition 5.3].

Corollary 2.14. For an R-labeled poset P of rank n, the Poincaré polynomial is the
coeffcient of an−1 in ι

(
ω
(
Ψ(P ; a,b)

))
.

Corollary 2.9 generalizes [5, Theorem 3.1] relating the ab-index of the lattice of flats of
an oriented matroid with the ab-index of its face poset. As a consequence, we see that
exΨ(P ; y, a,b) is akin to a refinement of a cd-index. We make this observation precise in
the following corollary.

Corollary 2.15. For an R-labeled poset P , there exists a polynomial Φ(P ; c1, c2,d) in
noncommuting variables c1, c2,d such that

exΨ(P ; y, a,b) = Φ(P ; a+ yb, b+ ya, ab+ yba+ yab+ y2ba).

In particular, the pullback ab-index Ψpull(P ; a,b) is a polynomial in noncommuting vari-
ables c = a+ b and 2d = 2(ab+ ba).

Remark 2.16 (The synthetic cd-index). Recall that the cd-index of a poset exists if the
ab-index can be written as a polynomial in c = a+ b and d = ab+ ba. Bayer, Fine, and
Klapper observe that a poset satisfies the generalized Dehn-Sommerville relations if and
only if its cd-index exists and has nonnegative integer coefficients [3, Theorem 4]. The
cd-index of an Eulerian poset always exists (see [2, Theorem 2.1]) and has nonnegative
coefficients when it comes from the face poset of a polytope (or, more generally, from a
Gorenstein* poset) [20, Theorem 1.3].

In [5], Billera, Ehrenborg, and Readdy give an elegant alternative proof of the nonneg-
ativity of the cd-index of the face poset of an oriented matroid. They use the support
map from Equation (4) to relate the ab-index of the lattice of flats to the ab-index of
the face poset. In our language, they interpret (using posets and polytopes) the extended
ab-index of an oriented matroid at y = 0 and y = 1. Every matroid admits an extended
ab-index, and the evaluation at y = 0 is the ab-index of its lattice of flats. This raises
the natural question whether there is a geometric or poset-theoretic interpretation of the
y = 1 evaluation of the extended ab-index. For this reason, we call the y = 1 evaluation
of the extended ab-index rewritten in terms of c and d the synthetic cd-index.

Example 2.17 (The Fano matroid). The extended ab-index of the Fano matroid [8,
Example 6.6.2(1)] is

a3 + (7y + 6)a2b+ (14y2 + 21y + 6)aba

+ (7y2 + 14y + 8)ab2 + (8y3 + 14y2 + 7y)ba2

+ (6y3 + 21y2 + 14y)bab+ (6y3 + 7y2)b2a+ y3b3.

Setting y = 1 and then c = a + b and d = ab + ba gives the synthetic cd-index
12cd+ 28dc+ c3. A convex 3-polytope with this cd-index would have 30 vertices and
14 facets; see [23]. Thus its polar dual polytope would have 14 vertices and 30 facets,
contradicting the Upper Bound Theorem [31, Theorem 8.23].

Example 2.18 (The Mac Lane matroid). We compute the synthetic cd-index of the
Mac Lane matroid ; see [9, page 114] and [29, Section 2]. We get the synthetic cd-index
18cd+32dc+c3, which is the cd-index of the polar dual of the convex hull of the following
20 points
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.

Remark 2.19 (Oriented interval greedoids). The argument used for oriented matroids
and their lattices of flats also applies to oriented interval greedoids, where the analogue
of Equation (4) is given in [26, Theorem 6.8]. Since the lattice of flats of an interval
greedoid is a semimodular lattice, it admits an R-labeling; see [6, Theorem 3.7]. Applying
Corollary 2.9 and setting y = 1 gives [26, Corollary 6.12].

Remark 2.20 (Distributive lattices & r-signed Birkhoff posets). Ehrenborg discussed an
ω-like substitution for arbitrary distributive lattices [13]. Remarkably, that substitution
is equivalent to the substitution in Corollary 2.9 for y = r − 1 ∈ N. In that case of
distributive lattices, the parameter r is a fixed integer (rather than a variable) carrying
information about the fiber sizes of a certain support map. For a (not necessarily graded)
finite poset P , the r-signed Birkhoff poset Jr(P ) is the collection of pairs (F , f) where F is
an order ideal in P and f is a map from the maximal elements in F to the set {1, . . . , r},
with order relation given by

(F , f) ≤ (G, g) ⇐⇒ G ⊆ F and f(x) = g(x) for all x ∈ max(F ) ∩max(G) .

These posets were defined in [13, 18] and studied in connection to the Birkhoff lattice
J(P ) = J1(P ). The map z : Jr(P ) → J(P ) with (F , f) 7→ F is an order- and rank-
preserving poset surjection for which the fiber size of a chain C in J(P ) can—in the
notation from the previous sections—be computed by

#z−1(C) = PoinC(J(P ); r − 1) ,

see [13, Proposition 5.2]. Since distributive lattices are modular, they admit R-labelings;
see [6, Theorem 3.7]. Thus, applying Corollary 2.9 for y = r − 1 gives the first part
of [13, Theorem 4.2].

By examining the statistic from Theorem 2.7, we see that the extended ab-index
has symmetry among its coefficients. We encode this in the following theorem, which
generalizes the bivariate version of [22, Theorem A].

Corollary 2.21. Let P be an R-labeled poset of rank n. Let moreover M be a maximal
chain in P and let E,Ec be complementary subsets of {1, . . . ,n} = E ∪ Ec. Then
u(M,E) = u1 . . . un and u(M,Ec) = uc

1 . . . u
c
n are complementary words, i.e., {ui,u

c
i} =

{a,b} for every i ∈ {1, . . . ,n}. In particular, the coefficients of yℓm and of yn−ℓmc in
exΨ(P ; q, a,b) coincide,

[yℓm] exΨ(P ; y, a,b) = [yn−ℓmc] exΨ(P ; y, a,b) ,

for complementary words m and mc in a,b and for ℓ ∈ {0, . . . ,n}.

We next turn toward the coarse flag Hilbert–Poincaré series introduced and studied
in [22]. The numerator of this rational function is defined in [22, Equation (1.13)], and we
extend this definition to graded posets via

Num(P ; y, t) =
∑

C chain in P\{0̂,1̂}

Poin{0̂}∪C(P ; y) · t#C(1− t)n−1−#C ∈ Z[y, t] .
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Example 2.22. Let L be the poset from Example 2.2. This poset has rank 2 and
numerator polynomial

Num(P ; y, t) = (1 + 3y + 2y2)(1− t) + 3 · (1 + y)2t = 1 + 3y + 2y2 + (2 + 3y + y2)t .

The following corollary generalizes the property in Equation (3) to extended ab-indices
and relates them to coarse flag Hilbert–Poincaré series. Recall from Corollary 2.14, the
function ι that deletes the first letter from every ab-monomial.

Corollary 2.23. For an R-labeled poset P , we have

ι
(
exΨ(P ; y, a,b)

)
=

∑
C chain in P\{0̂,1̂}

Poin{0̂}∪C(P ; y) · wt−C ∈ N[y]⟨a,b⟩ ,

where wt−C = w1 . . . wn−1.

Specializing the equation from Corollary 2.23 via a 7→ 1 and b 7→ t proves [22,
Conjecture E] and its generalization to R-labeled posets. We collect this in the following.

Corollary 2.24. For an R-labeled poset P , the coefficients of Num(P ; y, t) are nonnegative.

Together with Corollary 2.14, we obtain

(9) Poin(P ; y) = [t0] Num(P ; y, t).

The substitutions in the previous corollaries show that Theorem 2.7 also gives analogous
combinatorial interpretations for the coefficients of ι

(
exΨ(P ; y, a,b)

)
and of Num(P ; y, t).

Example 2.25. Recall that ι is the function that deletes the first letter of every ab-
monomial. Thus, ignoring the first position in the computation in Example 2.8 yields

ι
(
exΨ(L; y, a,b)

)
= (1 + 3y + 2y2)a+ (2 + 3y + y2)b .

The substitution a 7→ 1 and b 7→ t yields Num(L; y, t). Since n = 2, we have

[an−1] ι
(
exΨ(L; y, a,b)

)
= [t0] Num(L; y, t) = Poin(L; y) ,

also in agreement with Corollary 2.14.

Remark 2.26 (Geometric semilattices). Note that [22, Conjecture E] concerns all hy-
perplane arrangements (central and affine). While the intersection posets of central
hyperplane arrangements are geometric lattices and, thus, admit R-labelings [6, Example
3.8], the intersection posets of affine arrangements are part of a more general family
called geometric semilattices, first explicitly studied by Wachs and Walker in [28]. A
theorem of Ziegler shows that if L is a geometric semilattice, then L ∪ {1̂} admits an
R-labeling [30, Theorem 2.2]. Thus Theorem 2.7 holds for intersection posets of affine
arrangements (now with a formal unique maximal element included, which is consistent
with the formulation in [22, Conjecture E]).

Remark 2.27 (Implications for other zeta functions). The coarse flag Hilbert–Poincaré
polynomial of a poset P comes from a natural specialization of its flag Hilbert–Poincaré
series. The flag Hilbert–Poincaré series is a rational function in Q[y](tx | x ∈ P ) given by

fHPP (y, t) =
∑

C chain in P\0̂

PoinC(P ; y)
∏
x∈C

tx
1− tx

.

The coarse flag Hilbert–Poincaré polynomial Num(P ; y, t) is obtained by setting all the tx
equal to t and considering (1− t)rank(P )fHPP (y, t). Different specializations of fHPP (y, t)
yield other well-studied zeta functions like local Igusa zeta functions of hyperplane
arrangements [10], motivic zeta functions of matroids from [19], and the conjugacy class

10



counting zeta functions of certain group schemes defined in [25]. Moreover, each of
these is obtained from fHPP (y, t) by a monomial substitution of the form y = −p−1 and
tx = pλxtµx for some integers λx and µx, where p is a prime and t = p−s for a complex
variable s; see [22, Remark 1.3].

In each of these settings, the poles and their orders play an important role in under-
standing how quickly the terms of these zeta functions grow. Poles of zeta functions are
challenging to compute in general—see for example [11, Conjectures 2.3.1 & 2.3.2], [24, Con-
jecture IV], and [25, Question 1.8]. Corollary 2.24 tells us that fHPP (y, t) has exactly
one pole at t = 1 of order rank(P ). In particular, this result suggests there might be
similar combinatorial interpretations of the numerators of zeta functions obtained from
specializing fHPP (y, t).

The specialization of Num(P ; y, t) at y = 1 was studied further for matroids and oriented
matroids by the second author and Kühne in [21], who showed Num(P ; 1, t) is the sum of
h-polynomials of simplicial complexes related to the chambers if P is the lattice of flats of
a real central hyperplane arrangement. The following corollary gives a lower bound for
the coefficients of Num(P ; 1, t), whose proof also addresses the conjectured lower bound
in [21, Conjecture 1.4] generalized to the setting of R-labeled posets—originally stated for
geometric lattices.

Corollary 2.28. Let P be an R-labeled poset of rank n. The coefficients of Num(P ; 1, t)
are bounded below by

[tk] Num(P ; 1, t) ≥
(
n− 1

k

)
· Poin(P ; 1) .

3. The combinatorial extended ab-index and quasisymmetric functions

So far, we have only presented our results for R-labeled posets. In this section, we
consider more general graded posets with arbitrary edge labelings and explore connections
to quasisymmetric functions. We end with a Schur-positivity conjecture of the map ω
from Corollary 2.9 applied to a Schur function.

Theorem 2.7 shows that the extended ab-index of an R-labeled poset has nonnegative
coefficients. Nonnegativity may fail, however, for posets that do not admit R-labelings.
For example, the weak order for the symmetric group S3 (the hexagon poset) does not
admit an R-labeling, and its extended ab-index is

a3 + (2y + 1) a2b+ (2y + 1) aba+
(
2y2 − 1

)
ab2+(

−y3 + 2y
)
ba2 +

(
y3 + 2y2

)
bab+

(
y3 + 2y2

)
b2a+ y3b3 .

Observe that this equals the ω-evaluation ω
(
a3 + a2b+ aba− ab2

)
of its ab-index, in

accordance with Conjecture 2.10.

In this section, we define a combinatorial analogue of the extended ab-index and explore
some of its properties. This combinatorial analogue is manifestly positive for all posets
and closely related to certain quasisymmetric function identities.

3.1. The combinatorial extended ab-index. Using the right-hand side in Theorem 2.7,
we define the (combinatorial) extended ab-index of a finite edge-labeled graded
poset P via

cxΨ(P ; y, a,b) =
∑

(M,E)

y#E · u(M,E) ∈ N[y]⟨a,b⟩ .

11



So if P is R-labeled, then cxΨ and exΨ coincide, thanks to Theorem 2.7. For later
reference, we also set Ψc(P ; a,b) = cxΨ(P ; 0, a,b) to be the (combinatorial) ab-index and
Ψcpull(P ; a,b) = cxΨ(P ; 1, a,b) to be the (combinatorial) pullback ab-index.

While this combinatorial description is in general not linked to the Poincaré polynomial,
the proofs of Corollaries 2.9 and 2.12 still hold. We record this in the following corollary.

Corollary 3.1. We have

cxΨ(P ; y, a,b) = ω
(
Ψc(P ; a,b)

)
=
∑
(M,S)

(1 + y)#S · yb-out(M,S) · wtS ,

where the sum ranges over all maximal chains M and all M-peak-covering S ⊆ {1, . . . ,n},
where wtS = w1 . . . wn is given in Equation (1), and where b-out(M,S) is the number of
positions i /∈ S for which ui = b in u(M) = u1 . . . un as defined in Equation (6).

In particular, cxΨ(P ; y,a,b) is a polynomial in c1 = a + yb, c2 = b + ya and d =
ab+ yba+ yab+ y2ba. This means that 2 · cxΨ(P ; 1, a,b) is an ab-analogue of the peak
enumerator from [4, Definition 7.1]; see Equation (13) below.

3.2. Connections to quasisymmetric functions and P -partitions. In this section,
we discuss some of the connections between the combinatorial extended ab-index and the
theory of quasisymmetric functions. In order to make this precise, we first need to collect
a few relevant definitions. For more details, see [27, Section 1.4] and [4, Sections 6 & 7].

Let S = {s1 < · · · < sk} be a subset of {1, . . . ,n}. The monomial quasisymmetric
function MS is the power series

MS =
∑

i1<i2<···<ik<ik+1

xs1
i1
xs2−s1
i2

· · ·xsk−sk−1

ik
xn+1−sk
ik+1

∈ Q[[x1,x2,x3, . . . ]] .

Note that MS is homogeneous of degree n + 1 and—although we surpress it in the
notation—implicitly depends on n. The ring of quasisymmetric functions QSym is
the (linear) span of M• = 1 and all MS for n ≥ 0. Gessel introduced QSym to study
P -partitions and gave a second basis

FS =
∑

{1,...,n}⊇T⊇S

MT ∈ QSym ,(10)

which is related to the monomial quasisymmetric functions via inclusion-exclusion [15,
Equation 2]. Following [14, Section 3], we define a vector space isomorphism

Ξ : Q⟨a,b⟩ −→ QSym

wtT 7−→ MT .

Comparing Equation (10) with the relation

mS =
∑
T⊇S

wtT ∈ Q⟨a,b⟩

yields
Ξ : mS 7−→ FS .

Using the isomorphism Ξ, we can view the map ω from Corollary 2.9 as a map

ω : QSym −→ QSym⊗Q[y]

which is given by

(11) FS 7→ ω(FS) = Ξ
(
ω(mS)

)
.
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As an example, consider S = {2} ⊆ {1, 2, 3}. Then mS = aba and

ω(mS) =
(
(1 + y)ab+ y(1 + y)ba

)
(a+ yb)

= (1 + y)aba+ y(1 + y)abb+ y(1 + y)baa+ y2(1 + y)bab ,

implying

ω(FS) = (1 + y)F{2} + y(1 + y)F{2,3} + y(1 + y)F{1} + y2(1 + y)F{1,3} ∈ QSym⊗Q[y] .

Next we use Ξ to turn relations concerning ab-indices into relations concerning quasisym-
metric functions.

Given a finite poset P together with an injective vertex labeling γ : P → N, the weight
enumerator is the generating function of all P -partitions. As in [27, Equation 1.7],
the peak enumerator Γ(P ) is equal to the following quasisymmetric function

(12) Γ(P ) =
∑

π∈LinExt(P )

FDes(π)

where LinExt(P ) is the set of linear extensions of P and

Des(π) =
{
i ∈ {1, . . . ,n− 1} | γ(pi) > γ(pi+1)

}
is the set of descents of a linear extension π = [p1, . . . , pn]. Note that the set LinExt(P )
of linear extensions can be identified with the set of maximal chains in its Birkhoff
lattice J(P ) by recording which element was added to the order ideal at each step of the
chain; see Remark 2.20. Given a vertex labeling γ of P , we obtain an edge labeling λγ

of J(P ) with the property that λγ is an R-labeling if and only if γ is a natural labeling
of P , i.e., if p < q in P implies γ(p) < γ(q).

For example, Equation (12) corresponds—via Ξ—to Equation (8). Now setting y = 0
in the combinatorial extended ab-index and applying Ξ gives

Ξ
(
ιΨc(J(P ); a,b)

)
= Γ(P ) .

where ι deletes the first letter of every monomial. This first letter (which is equal to a for
every monomial in u(M, ∅)) is removed because it does not come from the comparison
between labels along the chain as explained in Remark 2.4. We illustrate this in the
following example.

Example 3.2. Consider the following pair of P and J(P ).

J


1 2

3
 =

∅

1 2

12

123

.

Then we have

Γ(P ) = F∅ + F{1} = M∅ + 2M{1} +M{2} + 2M{1,2}

for the two linear extensions [1, 2, 3] and [2, 1, 3] of P with the respective descent sets. On
the other hand, we obtain

ιΨc(J(P ); a,b) = ι(aaa+ aba) = aa+ ba = (a− b)2 + 2b(a− b) + (a− b)b+ 2bb .
13



Next we observe that the pullback ab-index is connected to the weight enumerator for
enriched P -partitions as defined in [27, Section 2]. From [27, Equation 2.4], the weight
enumerator ∆(P ) of an enriched P -partition can be expressed as a sum of quasisymmetric
functions indexed by peak sets. Setting y = 1 in Corollary 3.1 and comparing to [27,
Proposition 2.2] gives

(13) Ξ : 2 · ι
(
cxΨ(J(P ); 1, a,b)

)
7→ ∆(P ) .

In [27, Theorem 3.1(c)], Stembridge shows that the weight enumerators ∆(P ) linearly
span the peak algebra Π ⊆ QSym. Concretely, ∆(P ) can be written as a sum over maximal
chains of J(P ). For a maximal chain M in J(P ) with corresponding linear extension
π = [p1, . . . , pn] ∈ LinExt(P ), let the peak set be

S =
{
i ∈ {2, . . . ,n− 1} | γ(pi−1) < γ(pi) > γ(pi+1)

}
.

Following [4, Equation 5.3] and [27, Proposition 2.2], define

ΘS =
∑

S⊆T⊆S∪(S+1)

2#T+1MT ,

where S + 1 = {i+ 1 | i ∈ S}. The peak algebra Π ⊆ QSym is the linear span of all ΘS

together with M• = 1. Now combining Equation (24) from page 24 and Corollary 3.1
gives

(14) Ξ : 2 · ι
(
θ(M, 1)

)
7→ ΘS .

3.3. Connections to Schur functions. In [27, Equation (1.8)], Stembridge shows how
to obtain (skew) Schur functions as P -partition enumerators of certain posets given
in [27, Section 1.3]. For a given (top-left aligned) Ferrers diagram of a partition λ ⊢ n,
the poset is obtained by ordering its cells from left to right and from bottom to top, and
labeling them row by row with the numbers 1 through n. The poset is therefore the set
{1, . . . ,n} where i ≤ j if and only if the cell labeled by i is northwest of the cell labeled
by j. Observe that this is usually not a natural labeling.

Corollary 3.3. Let λ ⊢ n be a partition identified with the above poset of its labeled
Ferrers diagram. Then

sλ = Ξ
(
ιΨc(J(λ); a,b)

)
.

Example 3.4. Consider λ = (2, 2) ⊢ 4. The poset structure on its diagram is then

3

1 4

2

and we obtain its two linear extensions [3, 1, 4, 2] and [3, 4, 1, 2]. Thus,

s[2,2] = F{1,3} + F{2} = Ξ(bab+ aba) = Ξ
(
ι(abab+ aaba)

)
= Ξ

(
ιΨc(J(λ); a,b)

)
.

In addition, we can compute ω(s[2,2]) as given in Equation (11) by

ω(s[2,2]) = Ξ
(
ω(bab+ aba)

)
= Ξ

(
(y2 + y)aab+ (y3 + y2 + y + 1)aba+ (y2 + y)abb+

+ (y2 + y)baa+ (y3 + y2 + y + 1)bab+ (y2 + y)bba
)

= (y2 + y)F{3} + (y3 + y2 + y + 1)F{2} + (y2 + y)F{2,3}

+ (y2 + y)F{1} + (y3 + y2 + y + 1)F{1,3} + (y2 + y)F{1,2} .
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It turns out that this is a symmetric function, and its Schur expansion is

ω(s[2,2]) = (y2 + y)s[2,1,1] + (y3 + 1)s[2,2] + (y2 + y)s[3,1] .

The analogous calculation for [3, 2] ⊢ 5 yields

ω(s[3,2]) = (y3 + y2)s[2,1,1,1] + (y4 + y3 + y2 + y)s[2,2,1]

+ (y3 + 2y2 + y)s[3,1,1] + (y3 + y2 + y + 1)s[3,2] + (y2 + y)s[4,1] .

These examples suggest the following conjecture2.

Conjecture 3.5. For any partition λ ⊢ n, the quasisymmetric function ω(sλ) is symmetric
and Schur positive. Specifically, for each µ ⊢ n, there exist cµλ(y) ∈ N[y] such that

ω(sλ) =
∑
µ⊢n

cµλ(y) · sµ .

After posting this paper to the arXiv, Ricky Liu proved the following theorem involving
the Kronecker product (denoted by ∗) and Kronecker coefficients gλ,µ,ν .

Theorem 3.6 (Liu). For any partition λ ⊢ n,

ω(sλ) =
n−1∑
k=0

(sλ ∗ s(n−k,1k))y
k =

∑
µ⊢n

cµλ(y) · sµ,

where

cµλ(y) =
n−1∑
k=0

gλ,µ,(n−k,1k)y
k ∈ N[y].

The proof of this theorem is included as an appendix, see Theorem A.3 in Appendix A.

4. The combinatorial description of the extended ab-index

In this section we prove Theorem 2.7 as well as Corollaries 2.21, 2.24 and 2.28. First
we use a property of R-labelings to rewrite the chain Poincaré polynomial as a sum over
maximal chains (Proposition 4.2). Then, in Section 4.1, we use an inclusion-exclusion
argument to give a combinatorial description of the coefficients of the extended ab-index.
The proof of Theorem 2.7 and the corollaries are given in Section 4.2 and come from
reformulating this combinatorial description.

Throughout this section, we fix an R-labeled poset P of rank n together with an
R-labeling λ. We start by recalling the following rewriting of the Möbius function in
terms of maximal chains.

Lemma 4.1 ([7, Corollary 2.3]). Let X,Y ∈ P with X ≤ Y . Then

(−1)rank(Y )−rank(X)µ(X,Y ) = #
{
X = Ci⋖Ci+1⋖· · ·⋖Cj = Y | λ(Ci, Ci+1) > · · · > λ(Cj−1, Cj)

}
.

We distinguish multisets from sets by using two curly brackets, and a multichain is a
totally ordered multiset. For k ≥ 0 and a chain C = {C1 < · · · < Ck} in P , say that a
multichain D = {{D1 ≤ · · · ≤ Dk}} in P interlaces C if

(15) C1 ≤ D1 ≤ C2 ≤ D2 ≤ · · · ≤ Ck ≤ Dk .

2This conjecture was exhibited at the 90th Séminaire Lotharingien de Combinatoire in Bad Boll,
Germany in September 2023 in collaboration with Darij Grinberg.
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Note that we allow D to be a multichain only because we could have Di−1 = Ci = Di for
some position i. We call such a pair (C,D) an interlacing pair. For a chain C in P , let

IL(C) = {D | (C,D) is an interlacing pair},
the set of multichains interlacing C. For (C,D) interlacing, we write

IRank(C,D) =
{
rank(C1) + 1, . . . , rank(D1)

}
∪ · · · ∪

{
rank(Ck) + 1, . . . , rank(Dk)

}
=
{
r ∈ {1, . . . ,n}

∣∣ rank(Ci) < r ≤ rank(Di) for some position i
}
,

and we denote the cardinality of this set by

irank(C,D) = #IRank(C,D) =
k∑

i=1

rank(Di)−
k∑

i=1

rank(Ci) .

A maximal chain M = {M0 ⋖ M1 ⋖ · · · ⋖ Mn} in P decreases along the interval
[Mi,Mj] if

λ(Mi,Mi+1) > · · · > λ(Mj−1,Mj) .

Similarly, we say that M weakly increases along [Mi,Mj] if

λ(Mi,Mi+1) ≤ · · · ≤ λ(Mj−1,Mj) .

We say M is decreasing (resp. weakly increasing) if M is decreasing (resp. weakly
increasing) along [M0,Mn] = P . Let Alt(C,D) be the set of maximal chains M in P
that refine the underling chain from Equation (15) which

• decrease along all the intervals of the form [Ci,Di], and
• weakly increase along all the intervals of the forms [0̂, C1], [Di, Ci+1] and [Dk, 1̂].

We say that such a maximal chain M ∈ Alt(C,D) is alternating with respect to (C,D).

Proposition 4.2. Let P be an R-labeled poset, and let C be a chain in P . Then

PoinC(P ; y) =
∑
ℓ≥0

yℓ ·
∑

D∈IL(C)
irank(C,D)=ℓ

#Alt(C,D)

 .

Proof. We first rewrite the chain Poincaré polynomial, and then invoke Lemma 4.1. For
C = {C1 < · · · < Ck}, we have

PoinC(P ; y) =
k∏

i=1

Poin([Ci, Ci+1]; y) =
k∏

i=1

 ∑
X∈[Ci,Ci+1]

µ(Ci,X) · (−y)rank(X)−rank(Ci)



=
∑
ℓ≥0

yℓ ·
∑

D∈IL(C)
irank(C,D)=ℓ

k∏
i=1

(
(−1)rank(Di,Ci)µ(Ci,Di)

) .

We may interpret (−1)rank(Di,Ci)µ(Ci,Di) via maximal chains from Ci to Di using Lemma 4.1.
From the definition of an R-labeling, each interval [Di, Ci+1] has a unique weakly increasing
chain. By gluing together weakly increasing and decreasing pieces, we finally obtain, for
D ∈ IL(C),

k∏
i=1

(
(−1)rank(Di,Ci)µ(Ci,Di)

)
= #Alt(C,D). □
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4.1. An inclusion-exclusion construction. The inclusion-exclusion construction starts
with a set Aℓ(S) associated to a subset S ⊆ {0, . . . ,n− 1} and a parameter ℓ ≥ 0. It is
given by

Aℓ(S) =

(C,D,M)

∣∣∣∣∣∣
(C,D) interlacing

Rank(C) = S, irank(C,D) = ℓ
M ∈ Alt(C,D)

 .

In other words, we consider triples (C,D,M) carrying the following data: a chain C in P
with the prescribed ranks Rank(C) = S, a multichain D interlacing C with irank(C,D) = ℓ,
and a maximal chain M that is alternating with respect to the pair (C,D). The following
lemma is immediate from the definition.

Lemma 4.3. For all S ⊆ {0, . . . ,n− 1} and ℓ ≥ 0, we have

#Aℓ(S) =
∑
(C,D)

#Alt(C,D),

where the sum ranges over all interlacing pairs (C,D) with Rank(C)=S and irank(C,D)=ℓ.

Remark 4.4. Given a graded poset P of rank n and a subset S ⊆ {0, . . . ,n− 1}, let α(S)
denote the number of chains in P with prescribed ranks S, and let β(T ) be the signed
sum

∑
S⊆T (−1)#(T\S)α(S). The ab-index of P can then be expressed as

Ψ(P ; a,b) =
∑

T⊆{0,...,n−1}

β(T ) · uT =
∑

T⊆{0,...,n−1}

(∑
S⊆T

(−1)#(T\S)α(S)

)
· uT ,

where uT = w0 . . . wn−1 with wi = b if i ∈ T and wi = a if i /∈ T . In this section we define
an analogue of α(S) for the extended ab-index, and use an inclusion-exclusion construction
to obtain the analogue of β(S). This describes, in particular, how we use R-labelings since
our analogue of α(S) uses this machinery to interpret the Möbius function via chains as
described in Lemma 4.1.

Define the embedding φS,T : Aℓ(S) ↪→ Aℓ(T ) for S ⊆ T ⊆ {0, . . . ,n− 1} given by

φS,T (C,D,M) =
(
C ∪ {Mr | r ∈ T \ S}, D ∪ {Mr | r ∈ T \ S}, M

)
.

It is immediate thatM ∈ Alt(C,D) impliesM ∈ Alt(C∪{Mr},D∪{Mr}) for r /∈ Rank(S),
so this embedding is well-defined. These maps are compatible with one another in the
sense that φT ,U ◦ φS,T = φS,U for S ⊆ T ⊆ U . For T ⊆ {0, . . . ,n− 1}, this allows us to
define the set

Bℓ(T ) = Aℓ(T )
∖ ⋃

S⊊T

φS,T

(
Aℓ(S)

)
.

Proposition 4.5. For T ⊆ {0, . . . ,n− 1} and ℓ ≥ 0, we have

#Bℓ(T ) =
∑
S⊆T

(−1)#T−#S
∑
(C,D)

#Alt(C,D) ,

where the inner sum ranges over all interlacing pairs (C,D) in P for which Rank(C) = S
and irank(C,D) = ℓ.

Proof. We have

#Bℓ(T ) = #Aℓ(T )−#
⋃
S⊊T

φS,T

(
Aℓ(S)

)
=
∑
S⊆T

(−1)#T−#S#Aℓ(S) ,

where the second equality follows from the principle of inclusion-exclusion. The statement
follows from Lemma 4.3. □
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We are now ready to give a first combinatorial description for the coefficients of the
extended ab-index, which are given by the cardinalities of the sets Bℓ(T ).

Theorem 4.6. For all T ⊆ {0, . . . ,n− 1} and ℓ ≥ 0,

[yℓ ·mT ] exΨ(P ; y, a,b) = #Bℓ(T ) ,

where mT = m0 . . .mn−1 with mi = b if i ∈ T and wi = a if i /∈ T .

Proof. Rewriting the weight function in the definition of exΨ(P ; y, a,b) gives

exΨ(P ; y, a,b) =
∑

C chain in P\{1̂}

PoinC(P ; y) · wtC

=
∑

C chain in P\{1̂}

∑
T⊆{0,...,n−1}
Rank(C)⊆T

(−1)#T\Rank(C)PoinC(P ; y) ·mT .

By specifying the ranks of these chains and rearranging the order of summation, we obtain

exΨ(P ; y, a,b) =
∑

S⊆{0,...,n−1}

∑
C chain in P
Rank(C)=S

∑
T⊆{0,...,n−1}

S⊆T

(−1)#T\SPoinC(P ; y) ·mT

=
∑

S⊆T⊆{0,...,n−1}

∑
C chain in P
Rank(C)=S

(−1)#T\SPoinC(P ; y) ·mT .

Applying Propositions 4.2 and 4.5 yields

exΨ(P ; y, a,b) =
∑
ℓ≥0

yℓ
∑

T⊆{0,...,n−1}

∑
S⊆T

(−1)#(T\S)
∑
(C,D)

#Alt(C,D)

 ·mT

=
∑
ℓ≥0

yℓ
∑

T⊆{0,...,n−1}

#Bℓ(T ) ·mT . □

Example 4.7. Below we compute Aℓ(T ) and Bℓ(T ) for the poset L from Example 2.2.
We record a triple (C,D,M) ∈ Aℓ(T ) as follows: a maximal chain M = {0̂⋖ αi ⋖ 1̂} is
recorded by αi, C is given by M and the property Rank(C) = T , and D is finally given by
IRank(C,D) = E ⊆ {1, 2}.

T ℓ E Aℓ(T ) Bℓ(T )

∅ 0 ∅ α1 α1

{0} 0 ∅ α1 ∅
{1} 0 ∅ α1,α2,α3 α2,α3

{0, 1} 0 ∅ α1,α2,α3 ∅
∅ 1 - ∅ ∅
{0} 1 {1} α1,α2,α3 α1,α2,α3

{1} 1 {2} α1,α2,α3 α2,α3

{0, 1} 1 {1}, {2} α1,α2,α3 ∅
∅ 2 - ∅ ∅
{0} 2 {1, 2} α2,α3 α2,α3

{1} 2 - ∅ ∅
{0, 1} 2 {1, 2} α1,α2,α3 α1
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4.2. Reinterpreting the coefficients. Next we reinterpret Bℓ(T ) in order to prove
Theorem 2.7. We show, for a given maximal chain M in P and a set E ⊆ {1, . . . ,n}, that
there is a unique interlacing pair (C,D) and a unique set T ⊆ {0, . . . ,n− 1} such that

(16) IRank(C,D) = E and (C,D,M) ∈ B#E(T ) .

For a set E ⊆ {1, . . . ,n}, let IE, JE ⊆ {1, . . . ,n} denote the set of ranks where intervals
of consecutive elements outside and inside of E end, respectively. In symbols,

IE =
{
i ∈ {1, . . . ,n} | i ̸∈ E, i+1 ∈ E

}
and JE =

{
i ∈ {1, . . . ,n} | i ∈ E, i+1 ̸∈ E

}
.

The next lemma now follows immediately from unpacking definitions.

Lemma 4.8. Let E ⊆ {1, . . . ,n}. An interlacing pair (C,D) satisfies IRank(C,D) = E if
and only if

IE = Rank(C) \
(
Rank(C) ∩ Rank(D)

)
, JE = Rank(D) \

(
Rank(C) ∩ Rank(D)

)
.

For a maximal chain M, a set E ⊆ {1, . . . ,n}, and a subset R ⊆ {0, . . . ,n} \ IE, set
(17) CR = {Mi | i ∈ IE ∪R} and DR = {{Mi | i ∈ JE ⊔R}} ,
where JE ⊔R is a multiset union. For a maximal chain M in P , define

ILM,E =
{
(C,D) | D ∈ IL(C), IRank(C,D) = E, M ∈ Alt(C,D)

}
.

Recall from Section 4.1 that the set Aℓ(S) consists of triples (C,D,M) for interlacing pairs
(C,D) such that Rank(C) = S and M is alternating with respect to (C,D). Our next step
is to use CR and DR to rewrite Aℓ(S). To that end, we identify the subsets R ⊆ {0, . . . ,n}
for which a given maximal chain M is alternating with respect to (CR,DR).

Lemma 4.9. Let M be a maximal chain, and let E ⊆ {1, . . . ,n}. Given the monomial
u(M) = u1 · · ·un, let T(M,E) be the set of indices i ∈ {0, . . . ,n− 1} given by

T(M,E) =
{
i | i, i+ 1 ∈ E, ui+1 = a

}
∪
{
i | i, i+ 1 /∈ E, ui+1 = b

}
.

Then we have

ILM,E =
{
(CR,DR) | T(M,E) ⊆ R ⊆ {0, . . . ,n} \ IE

}
.

Proof. By Lemma 4.8, an interlacing pair (C,D) satisfies IRank(C,D) = E if and only if
there exists R ⊆ {0, . . . ,n} \ IE such that (C,D) = (CR,DR). Thus, it suffices to identify
those sets R for which the given maximal chain M is alternating with respect to (CR,DR).
That is, λ decreases along all intervals of M of the form [Ci,Di] and weakly increases along
intervals of the form [0̂, C1], [Di, Ci] and [Di, 1̂], where C = CR and D = DR. Recall that
ui+1 = a if λ(Mi−1,Mi) ≤ λ(Mi,Mi+1) and ui+1 = b otherwise. Let i ∈ T(M,E), and
assume i /∈ R. If i, i+ 1 ∈ E, then λ(Mi−1,Mi) ≤ λ(Mi,Mi+1), so M is not decreasing
along [Ci,Di]. The case where i, i+ 1 /∈ E is analogous. Hence, M ∈ Alt(CR,DR) if and
only if T(M,E) ⊆ R, so the lemma follows. □

Example 4.10. Recall the poset L from Example 2.2. We give, for each maximal
chain in L and each subset of {0, 1, 2}, the unique pair of interlacing chains satisfying
Equation (16).

0̂⋖
1
α1 ⋖

2
1̂ 0̂⋖

2
α2 ⋖

1
1̂ 0̂⋖

3
α3 ⋖

1
1̂

{} {}, {} {α2}, {α2} {α3}, {α3}
{0} {0̂}, {α1} {0̂}, {α2} {0̂}, {α3}
{1} {α1}, {1̂} {α2}, {1̂} {α3}, {1̂}
{0, 1} {0̂ < α1}, {α1 < 1̂} {0̂}, {1̂} {0̂}, {1̂}
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The next step is to translate Lemma 4.9 into a statement about Aℓ(S), which we then
use to simplify the description of Bℓ(T ).

Proposition 4.11. Let S ⊆ {0, . . . ,n−1} and ℓ ≥ 0. We have the following decomposition
of Aℓ(S) into disjoint subsets

Aℓ(S) =
⋃

(M,E)

{
(C,D,M) | (C,D) ∈ ILM,E and Rank(C) = S

}
,

where the disjoint union ranges over all maximal chains M and all subsets E ⊆ {1, . . . ,n}
of cardinality #E = ℓ. Moreover,

Bℓ(T ) =

{(
CT(M,E),DT(M,E),M

) ∣∣∣∣ M maximal chain, E ⊆ {1, . . . ,n},
#E = ℓ, Rank(CT(M,E)) = T

}
.

Proof. Let M be a maximal chain, E ⊆ {1, . . . ,n} of cardinality #E = ℓ, and S ⊆
{0, . . . ,n− 1}. We then write

IL∗M,E(S) =
{
(C,D,M) | (C,D) ∈ ILM,E and Rank(C) = S

}
,

and observe that both IL∗M,E(S) ⊆ Aℓ(S) and IL∗M,E(S) ∩ IL∗M,E′(S) = ∅ for different
subsets E and E ′ of {1, . . . ,n}. Moreover, for (C,D,M) ∈ Aℓ(S) with E = IRank(C,D),
we have that (C,D,M) ∈ IL∗M,E. This proves the first claim.
The set Bℓ(T ) comprises the elements in Aℓ(T ) that do not appear in Aℓ(S) for any

proper subset S ⊊ T . From Lemma 4.9, it follows that

IL∗M,E(S) =
{
(CR,DR,M) | T(M,E) ⊆ R ⊆ {0, . . . ,n} \ IE and Rank(CR) = S

}
.

The elements in Aℓ(T ) not in Aℓ(S) for S ⊊ T are, thus, exactly the elements of the
form (CR,DR,M) for some maximal chain M and some subset E ⊆ {1, . . . ,n} such that
Rank(CR) = T and R = T(M,E). This yields the proposed description of Bℓ(T ). □

We finally describe the cardinality of the set Bℓ(T ) in terms of the statistic u(M,E)
given in Section 2.2. Recall for a subset T ⊆ {0, . . . ,n−1}, the monomial uT = w0 . . . wn−1

in a,b is given by wi = b if i ∈ T and wi = a if i /∈ T .

Corollary 4.12. Let ℓ ≥ 0, and let T ⊆ {0, 1, . . . ,n− 1}. Then #Bℓ(T ) is the number of
pairs (M,E) of a maximal chain M and a subset E ⊆ {1, . . . ,n} of cardinality #E = ℓ
such that u(M,E) = uT .

Proof. Proposition 4.11 shows that for every pair (M,E), the triple (CR,DR,M) is
contained in B#E(T ) for T = Rank(CR) and R = T(M,E). The definition of CR yields
that T is the set of positions in {0, . . . ,n− 1} given by{

i | i /∈ E, i+ 1 ∈ E
}
∪
{
i | i, i+ 1 ∈ E, ui+1 = a

}
∪
{
i | i, i+ 1 /∈ E, ui+1 = b

}
,

where u(M) = u(M, ∅) = u1 · · ·un. The description of u(M,E) in Section 2.2 can be
easily seen to be equivalent to u(M,E) = v1 . . . vn with

vi+1 = a if


i ∈ E, i+ 1 /∈ E, or

i /∈ E, i+ 1 /∈ E, ui+1 = a or

i ∈ E, i+ 1 ∈ E, ui+1 = b ,

vi+1 = b if


i /∈ E, i+ 1 ∈ E, or

i ∈ E, i+ 1 ∈ E, ui+1 = a or

i /∈ E, i+ 1 ̸∈ E, ui+1 = b
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for i ∈ {0, . . . ,n− 1}. Comparing these two descriptions of T and of u(M,E) proves that
uT = u(M,E). □

Proof of Theorem 2.7. Combining Corollary 4.12 and Theorem 4.6 shows that the coeffi-
cient of yℓuT in exΨ(P ; y, a,b) equals

#
{
(M,E) | M maximal chain, E ⊆ {1, . . . ,n}, #E = ℓ, u(M,E) = uT

}
.

In other words, we have

exΨ(P ; y, a,b) =
∑

(M,E)

y#E · u(M,E) ,

where the sum ranges over all maximal chains M and all subsets E ⊆ {1, . . . ,n}. □

Proof of Corollary 2.21. For a given chain M, exchanging E ⊆ {1, . . . ,n} with its com-
plement Ec = {1, . . . ,n} \ E also exchanges roles of a and b in u(M,E) = u1 . . . un to
u(M,Ec) = uc

1 . . . u
c
n, meaning that {ui,u

c
i} = {a,b} for every position i. The result now

follows from Theorem 2.7. □

Proof of Corollary 2.23. Setting

exΨ◦(P ; y, a,b) =
∑

C chain in P\{0̂,1̂}

Poin{0̂}∪C(P ; y) · wt−C ∈ N[y]⟨a,b⟩ ,

we show that

(18) exΨ◦(P ; y, a,b) = ι
(
exΨ(P ; y, a,b)

)
.

All previously given arguments remain valid when only considering those sets Aℓ(S) and
Bℓ(T ) that contain 0. For T ⊆ {1, . . . ,n− 1}, we set

(19) B◦
ℓ(T ) = Aℓ(T ∪ {0})

∖ ⋃
S⊊T

φS,T

(
Aℓ(S ∪ {0})

)
.

It is immediate that the analogue of Theorem 4.6 holds, meaning that

(20) [yℓmT ] exΨ◦(P ; y, a,b) = #B◦
ℓ(T )

for mT = m1 · · ·mn−1 with mi = b if i ∈ T and mi = a if i /∈ T . Also the argument for
Corollary 4.12 remains valid when considering mT = m1 · · ·mn−1 instead of m0 · · ·mn−1.
We get that #B◦

ℓ(T ) equals the number of pairs (M,E) of a maximal chain M and a
subset E ⊆ {1, . . . ,n} of cardinality #E = ℓ such that ι(u(M,E)) = mT . This implies
Equation (18), finishing the proof of Corollary 2.23. □

We finish this section with a proof of Corollary 2.28. That is, we show that

(21) [tk] Num(P ; 1, t) ≥
(
n− 1

k

)
· Poin(P ; 1) .

By Corollary 2.24 and Equation (9), we have

Num(P ; 1, t) = exΨ◦(P ; 1, 1, t) and Poin(P ; 1) = Num(P ; 1, 0) = exΨ◦(P ; 1, 1, 0)

for exΨ◦(P ; y,a,b) = ι
(
exΨ(P ; y,a,b)

)
as given in Equation (18). Together with Equa-

tion (20), Equation (21) is equivalent to

(22)
∑
T

∑
ℓ≥0

#B◦
ℓ(T ) ≥

(
n− 1

k

)
·
∑
ℓ≥0

#B◦
ℓ(∅) ,

where the leftmost sum runs over all subsets T ⊆ {1, . . . ,n− 1} of cardinality k.
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Lemma 4.13. Let T ⊆ {1, . . . ,n− 1}. Then∑
ℓ≥0

#B◦
ℓ(T ) ≥

∑
ℓ≥0

#B◦
ℓ(∅).

Proof. It is clearly sufficient to construct an injection⋃
ℓ≥0

B◦
ℓ(∅) ↪→

⋃
ℓ≥0

B◦
ℓ(T ) .

Fix ℓ ≥ 0. Then (C,D,M) ∈ B◦
ℓ(∅) if and only if C = {M0}, D = {{Mℓ}}, and M is

decreasing along the interval [M0,Mℓ] and weakly increasing along the interval [Mℓ,Mn].
Now map (C,D,M) to (CM,T ,DM,T ,ℓ,M). Here, CM,T = {M0} ∪ {Mi | i ∈ T},

D′
M,T ,ℓ = {{Mℓ}} ⊔ {{Mi−1 | i ∈ T , i < ℓ}} ⊔ {{Mi+1 | i ∈ T , i > ℓ}}

and DM,T ,ℓ = D′
M,T ,ℓ if ℓ /∈ T . If ℓ ∈ T ,

DM,T ,ℓ =

{
D′

M,T ,ℓ ⊔ {{Mℓ−1}} if λ(Mℓ−1,Mℓ) > λ(Mℓ,Mℓ+1) ,

D′
M,T ,ℓ ⊔ {{Mℓ+1}} if λ(Mℓ−1,Mℓ) ≤ λ(Mℓ,Mℓ+1) .

By construction, we have that Rank(CM,T ) = {0} ∪ T and moreover that

(CM,T ,DM,T ,ℓ,M) ∈ B◦
ℓ′(T )

for some parameter ℓ′. This shows that the map is well-defined. It remains to show it
is also injective. First note that if M is a maximal chain which first decreases and then
only weakly increases, then there are exactly two interlacing pairs (C1,D1), (C2,D2) and
exactly two values of ℓ1, ℓ2 ≥ 0 such that (Ci,Di,M) ∈ B◦

ℓi
(∅). Moreover, ℓ1 and ℓ2 differ

by 1 meaning that {ℓ1, ℓ2} = {ℓ, ℓ+ 1} for some ℓ ≥ 0 and we have(
{M0}, {{Mℓ}},M

)
∈ B◦

ℓ(∅),
(
{M0}, {{Mℓ+1}},M

)
∈ B◦

ℓ+1(∅) .

Injectivity follows from DM,T ,ℓ ̸= DM,T ,ℓ+1 which is immediate from its definition. □

Proof of Corollary 2.28. This follows from Equation (22) and Lemma 4.13. □

5. Extending the ab-index

In this section we prove Corollaries 2.9 and 2.12. The proof comes from first proving a
special case of Corollary 2.9 and then showing how to extend this to the general setting.

As before, we fix an R-labeled poset P of rank n together with an R-labeling λ. Recall
that ω(m) is obtained from the monomial m in a,b by substituting all occurrences of
ab with ab + yba + yab + y2ba and then simultaneously substituting all remaining
occurrences of a with a+ yb and all occurrences of b with b+ ya. The main ingredient
in the proof of the corollary is the following proposition. Also recall the definition of
u(M) = u(M, ∅) given in Equation (6).

Proposition 5.1. Let M be a maximal chain in P . Then

ω
(
u(M)

)
=

∑
E⊆{1,...,n}

y#E · u(M,E) .

Before proving the proposition, we show how to deduce the first of the two corollaries.
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Proof of Corollary 2.9. Theorem 2.7 gives that

exΨ(P ; y, a,b) =
∑
M,E

y#E · u(M,E) ,

and in particular,

Ψ(P ; a,b) = exΨ(P ; 0, a,b) =
∑
M

u(M) .

By Proposition 5.1, we have

exΨ(P ; y, a,b) =
∑
M

ω
(
u(M)

)
= ω

(∑
M

u(M)

)
= ω

(
Ψ(P ; a,b)

)
. □

For a maximal chain M, we have that u(M) = m1 . . .mn starts with m1 = a, compare
Equation (7). For this reason, u(M) can be decomposed into a product of monomials of
the form abj for some j ≥ 0. This decomposition of u(M) induces a unique decomposition
of M into intervals [Xi,Xi+1] such that the restriction M[Xi,Xi+1] of M to the interval
[Xi,Xi+1] satisfies

u(M[Xi,Xi+1]) = abj

for some j ≥ 0. We call {0̂ = X1 < · · · < Xk = 1̂} the decomposing chain of M.
The following lemma shows how we can use decomposing chains to reduce the proof
of Proposition 5.1 to a special case.

Lemma 5.2. For a maximal chain M with decomposing chain {0̂ = X1 < · · · < Xk = 1̂}
as above, we have

ω
(
u(M)

)
=

k−1∏
i=1

ω
(
u(M[Xi,Xi+1])

)
.

Proof. This follows from the definition of the substitution ω and the fact that each
factor ab in u(M) appears in one of the intervals of the decomposition. □

We are now ready to prove Proposition 5.1 on each of the intervals given by the
decomposing chain. From there, we then use Lemma 5.2 to recover ω

(
u(M)

)
.

Lemma 5.3. Suppose u(M) = abj for some j ≥ 0. Then

ω
(
u(M)

)
=

∑
E⊆{1,...,j+1}

y#E · u(M,E) .

Proof. For j = 0, we have ω
(
u(M)

)
= a+ yb, as desired. For j ≥ 1, we have

(23) ω
(
u(M)

)
= (ab+ yba+ yab+ y2ba)(b+ ya)j−1.

There are 4 ·2j−1 = 2j+1 terms in the expansion. For each E ⊆ {1, . . . , j+1}, we explicitly
describe a unique summand sE of the expansion of the right side of Equation (23). Fix
E ⊆ {1, . . . , j + 1} and write sE = s1 · · · sj. For i ∈ {2, . . . , j}, we set si to yb if i ∈ E
and otherwise to a. Lastly, we set

s1 =


ab if 1 /∈ E, j + 1 /∈ E,

yba if 1 ∈ E, j + 1 /∈ E,

yab if 1 /∈ E, j + 1 ∈ E,

y2ba if 1 ∈ E, j + 1 ∈ E.

It is clear that sE is a summand in (the expansion of) Equation (23) since E encodes
exactly how to select terms in the j different factors. Moreover, sE = y#E · u(M,E). □
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Proof of Proposition 5.1. Let {0̂ = X1 < · · · < Xk = 1̂} be the decomposing chain for M.
For i ∈ {1, . . . , k − 1}, set IRi = {rank(Xi) + 1, . . . , rank(Xi+1)}. If Ei ⊆ IRi for each
i ∈ {1, . . . , k − 1} and E = E1 ∪ · · · ∪ Ek−1, then

u(M,E) = u(M[X1,X2],E1) · · · u(M[Xk−1,Xk],Ej−1).

Together with Lemmas 5.2 and 5.3, this gives

ω
(
u(M)

)
=

j−1∏
i=1

ω
(
u(M[Xi,Xi+1])

)
=

j−1∏
i=1

( ∑
Ei⊆IRi

y#Ei · u
(
M[Xi,Xi+1],Ei

))
=

∑
E⊆{1,...,n}

y#E · u(M,E) . □

The proof of the Corollary 2.12 uses a similar product decomposition, but is less involved.
The crucial step is to relate the substitution ω with the peak enumerator

(24) θ(M; y) =
∑
S

(1 + y)#S · yb-out(M,S) · wtS

where the sum ranges over all M-peak-covering subsets S ⊆ {1, . . . ,n}, where wtS =
w1 . . . wn is given in Equation (1), and where b-out(M,S) is the number of positions
i /∈ S for which ui = b in u(M) = u1 . . . un. In particular, Corollary 2.12 is an immediate
consequence of the following proposition.

Proposition 5.4. Let M be a maximal chain in P . Then

ω
(
u(M)

)
= θ(M; y) .

Proof. First we check the proposed equality for the three special cases u(M) ∈ {a,b, ab}.
If u(M) = a, we have ω(a) = a+ yb = (a− b)︸ ︷︷ ︸

S=∅

+(1 + y) · b︸ ︷︷ ︸
S={1}

.

If u(M) = b, we have ω(a) = ya+ b = y(a− b)︸ ︷︷ ︸
S=∅

+(1 + y) · b︸ ︷︷ ︸
S={1}

.

If u(M) = ab, we have

ω(ab) = (1 + y)ab+ (y + y2)ba

= (1 + y) · y · b(a− b)︸ ︷︷ ︸
S={1}

+(1 + y) · (a− b)b︸ ︷︷ ︸
S={2}

+(1 + y)2 · b2︸ ︷︷ ︸
S={1,2}

.

A straightforward computation shows that if m1 is a monomial of degree n and m2 is any
monomial satisfying

Peak(m1) ∪ {n+ i | Peak(m2)} = Peak(m1m2),

then θ(m1) θ(m2) = θ(m1m2) and ω(m1)ω(m2) = ω(m1m2). By decomposing u(M) into a
product of monomials of the special forms listed above (taking care that all successive ab
pairs stay in the same monomial), we obtain the result. □

Appendix A. Proof of Conjecture 3.5 (by Ricky Ini Liu)

In this section, we give a proof of Conjecture 3.5 by relating the map ω to the internal
(Kronecker) coproduct on quasisymmetric and symmetric functions.
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A.1. Internal coproduct. Given two (ordered) sets of variables x = {x1,x2, . . . } and
y = {y1, y2, . . . }, denote by xy = {x1y1,x1y2, . . . ,x2y1,x2y2, . . . } the set of pairwise
products xiyj in lexicographic order. Then for any quasisymmetric function f ∈ QSym,
we can decompose the power series f(xy) ∈ Q[[xy]] ⊆ Q[[x]]⊗Q[[y]] into a sum of the
form

f(xy) =
∑
i

gi(x)hi(y),

where gi,hi ∈ QSym. The internal coproduct (or Kronecker coproduct) of QSym is
the map ∆: QSym → QSym⊗ QSym given by

∆(f) =
∑
i

gi ⊗ hi.

(See, for instance, [15] for more discussion.)
The following result due to Gessel expresses the coproduct in terms of the fundamental

basis FS. (Recall that for a permutation π ∈ Sn, Des(π) = {i | π(i) > π(i+ 1)}.)

Proposition A.1 ([15, Theorem 11]). Let π ∈ Sn. Then

∆(FDes(π)) =
∑
τσ=π

FDes(σ) ⊗ FDes(τ),

where the sum ranges over all pairs of permutations σ, τ ∈ Sn such that τσ = π.

The internal coproduct on QSym restricts to a coproduct on symmetric functions. On
a Schur function sλ, we have

∆(sλ) =
∑
µ,ν

gλµνsµ ⊗ sν ,

where gλµν are the Kronecker coefficients. One can also define the internal or
Kronecker product ∗ on symmetric functions in terms of Kronecker coefficients:

sλ ∗ sµ =
∑
ν

gλµνsν .

It is well known that the Kronecker coefficients gλµν (which are symmetric in λ, µ, and ν)
are nonnegative integers since they describe the irreducible decomposition of the tensor
product of two irreducible representations of Sn.

A.2. Proof of Conjecture 3.5. The key lemma is the following description of the map
ω as defined on QSym in Section 3.2. Let φ be the linear map on QSym defined by

φ(FS) =

{
yk if S = {1, 2, . . . , k} for some 0 ≤ k ≤ n− 1,

0 otherwise.

Also recall that for 1 < i < n, we say i is a peak of a permutation π ∈ Sn if π(i− 1) <
π(i) > π(i+ 1), while i is a valley if π(i− 1) > π(i) < π(i+ 1).

Lemma A.2. Let π ∈ Sn. Then ω = (id⊗ φ) ◦∆, so that

ω(FDes(π)) =
∑
τσ=π

FDes(σ) · φ(FDes(τ)).

Proof. Suppose Des(τ) = {1, . . . , k} for some 0 ≤ k ≤ n − 1, and let σ = τ−1π. Each
such τ is determined by the subset {τ(1), . . . , τ(k)} ⊆ [n] \ {1}, and so the set E =
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{σ−1(1), . . . ,σ−1(k)} can be any of the 2n−1 subsets of [n] \ {π−1(1)}. Then we can
describe the transformation

ω′ : mDes(π) 7→
∑
τσ=π

Des(τ)={1,...,k}

ykmDes(σ)

by considering the effect when each j ̸= π−1(1) is chosen to be in E or not.
Note that if i < j, then τ−1(i) > τ−1(j) if and only if j ∈ {τ(1), . . . , τ(k)}. Then for

π(i) < π(j), we have σ(i) > σ(j) if and only if j ∈ E.

• Suppose j is a peak of π. If j /∈ E, then j is a peak of σ, while if j ∈ E, then j is
a valley of σ. Thus ω′ replaces each ab with ab+ yba.

• Suppose j is not a peak of π but it is a descent. If j /∈ E, then j is a descent of σ,
but if j ∈ E, then j is an ascent of σ. Thus ω′ replaces each remaining b with
b+ ya.

• Suppose j is not a peak of π but j − 1 is an ascent of π. If j /∈ E, then j − 1 is an
ascent of σ, but if j ∈ E, j − 1 is a descent of σ. Thus ω′ replaces each remaining
a with a+ yb.

• Otherwise, π(j) is smaller than both π(j − 1) and π(j + 1) (if they exist), and
the descents of π are unaffected by whether j ∈ E or not. Thus ω′ multiplies the
result by 1 + y for each j ̸= π−1(1) that falls in this case. Counting j = π−1(1),
exactly one such j occurs before, after, and between each peak. Therefore the
number of extra factors of 1 + y equals the number of peaks of π.

Comparing to the definition of ω in Corollary 2.9 shows that ω′ = ω on ab-monomials,
from which the result easily follows by Proposition A.1. □

We are now able to prove the following theorem, which resolves Conjecture 3.5.

Theorem A.3. For any partition λ ⊢ n,

ω(sλ) =
n−1∑
k=0

(sλ ∗ s(n−k,1k))y
k =

∑
µ⊢n

cµλ(y)sµ,

where

cµλ(y) =
n−1∑
k=0

gλ,µ,(n−k,1k)y
k ∈ N[y].

Proof. When writing the Schur function sν in the fundamental basis, the coefficient of
F{1,2,...,k} is 1 if ν = (n−k, 1k), and 0 otherwise. (This is because the unique standard Young
tableau of size n with descent set {1, 2, . . . , k} has shape (n− k, 1k), or see [15, Theorem
3].) It follows from Lemma A.2 that

ω(sλ) = (id⊗ φ) ◦∆(sλ)

=
∑
µ,ν⊢n

gλµνsµ · φ(sν)

=
∑
µ⊢n

n−1∑
k=0

gλ,µ,(n−k,1k)y
k · sµ

=
n−1∑
k=0

(sλ ∗ s(n−k,1k))y
k. □
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