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Abstract. Motivated by a conjecture concerning Igusa local zeta functions for intersec-
tion posets of hyperplane arrangements, we introduce and study the Poincaré-extended
ab-index, which generalizes both the ab-index and the Poincaré polynomial. For posets
admitting R-labelings, we give a combinatorial description of the coefficients of the
extended ab-index, proving their nonnegativity. In the case of intersection posets of
hyperplane arrangements, we prove the above conjecture of the second author and Voll.
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Grunewald, Segal, and Smith introduced the subgroup zeta function of finitely-generated
groups [14], and Du Sautoy and Grunewald gave a general method to compute such zeta
functions using p-adic integration and resolution of singularities [25]. This motivated
Voll and the second author to examine the setting where the multivariate polynomials
factor linearly. They found that the p-adic integrals are specializations of multivariate
rational functions depending only on the combinatorics of the corresponding hyperplane
arrangement [19]. After a natural specialization, its denominator greatly simplifies, and
they conjecture that the numerator polynomial has nonnegative coefficients.

In this work, we prove their conjecture, which is related to the poles of these zeta
functions; see Remark 1.19. Specifically, we reinterpret these numerator polynomials by
introducing and studying the (Poincaré-)extended ab-index, a polynomial generalizing both
the Poincaré polynomial and ab-index of the intersection poset of the arrangement. These
polynomials have been studied extensively in combinatorics, although from different
perspectives. The coefficients of the Poincaré polynomial have interpretations in terms
of the combinatorics and the topology of the arrangement [8, Section 2.5]. The ab-index,
on the other hand, carries information about the order complex of the poset and is
particularly well-understood in the case of face posets of oriented matroids—or, more
generally, Eulerian posets. In those settings, the ab-index encodes topological data via
the flag f -vector [2].

We study the extended ab-index in the generality of graded posets admitting R-
labelings. This class of posets includes intersection posets of hyperplane arrangements
and, more generally, geometric lattices and geometric semilattices. We show that the
extended ab-index has nonnegative coefficients by interpreting them in terms of a combi-
natorial statistic. This generalizes statistics given for the ab-index by Billera, Ehrenborg,
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and Readdy [6] and for the pullback ab-index (defined below) by Bergeron, Mykytiuk,
Sottile and van Willigenburg [5]. This interpretation proves the aforementioned conjec-
ture [19], as well as a related conjecture from Kühne and the second author [18].

Motivated by the proofs of these conjectures, we describe a close relationship between
the Poincaré polynomial and the ab-index by showing that the extended ab-index can
be obtained from the ab-index by a suitable substitution. This recovers, generalizes and
unifies several results in the literature. Concretely, special cases of this substitution were
observed by Billera, Ehrenborg and Readdy for lattices of flats of oriented matroids [6], by
Saliola and Thomas for lattices of flats of oriented interval greedoids [24], and by Ehrenborg
for distributive lattices [11].

1 The Poincaré-Extended ab-index

1.1 Main definitions

Unless otherwise specified, P is a finite graded poset of rank n, that is, P is a finite poset
with unique minimum element 0̂ of rank 0 and unique maximum element 1̂ of rank n
such that rank(X) is equal to the length of any maximal chain from 0̂ to X. The Möbius
function µ of P is given by µ(X, X) = 1 for all X ∈ P and µ(X, Y) = −∑X≤Z<Y µ(X, Z)
for all X < Y in P. The Poincaré polynomial of P is

Poin(P; y) = ∑
X∈P

|µ(0̂, X)| · yrank(X) ∈ Z[y].

The chain Poincaré polynomial of a chain C =
{
C1 < · · · < Ck

}
in P \ {1̂} is

PoinC(P; y) =
k

∏
i=1

Poin([Ci, Ci+1]; y) ∈ Z[y],

where we set Ck+1 = 1̂. By taking the singleton chain {0̂}, we recover the usual Poincaré
polynomial, Poin(P; y) = Poin{0̂}(P; y). The ranks of a given chain C is given by

Rank(C) = {rank(Ci) | 1 ≤ i ≤ k} .

We often consider polynomials in noncommuting variables a and b with coefficients being
polynomials in Z[y]. For a subset S ⊆ {i, i + 1, . . . , j}, we write mS = mi . . . mj for the
monomial with mk = b if k ∈ S and mk = a if k /∈ S and we similarly write wtS = wi . . . wj
for the polynomial with

wk =

{
b if k ∈ S,
a − b if k /∈ S .

(1.1)
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The supersets {i, i + 1, . . . , j} are understood from the context as the set of all indices that
can possibly be contained in the set S. In case of ambiguity, we in addition identify the
considered superset. For a chain C in P, we also set mC = mRank(C) and wtC = wtRank(C).
The following is the main object of study of this paper.

Definition 1.1. The (Poincaré-)extended ab-index of P is

exΨ(P; y, a, b) = ∑
C chain in P\{1̂}

PoinC(P; y) · wtC ∈ Z[y]⟨a, b⟩ ,

where wtC = w0 · · ·wn−1 is given in Equation (1.1).

Since P has a unique minimum, we always have Poin(P; 0) = 1, implying

exΨ(P; 0, a, b) = ∑
C chain in P\{1̂}

wtC .

This recovers the ab-index Ψ(P; a, b) = exΨ(P; 0, a, b).

Example 1.2. We compute the extended ab-index of the poset L drawn below on the left.

1̂

α1 α2 α3

0̂

C PoinC(L; y) Rank(C) wtC

{} 1 {} (a − b)2

{0̂} 1 + 3y + 2y2 {0} b(a − b)

{αi} 1 + y {1} (a − b)b

{0̂ < αi} (1 + y)2 {0, 1} b2

The extended ab-index and its specialization to the ab-index are thus

exΨ(L; y, a, b) = (a − b)2+(1 + 3y + 2y2)b(a − b)+3 · (1 + y)(a − b)b+3 · (1 + y)2b2

= a2 + (3y + 2y2)ba + (2 + 3y)ab + y2b2,

Ψ(L; a, b) = a2 + 2ab .

Remark 1.3. Taking chains C in P \ {1̂}, rather than in P, is a harmless reduction in the
definition of the extended ab-index since PoinC(P; y) = PoinC∪{1̂}(P; y). If we consider
both C and C ∪ {1̂} separately as summands of exΨ(P; y, a, b), we would need to consider
weights wt+C = w0 · · ·wn taking also the n-th position into account. We would have the
two terms PoinC(P; y) · wt+C and PoinC∪{1̂}(P; y) · wt+C∪{1̂}, differing only in the last entry

of the weight, so their sum is PoinC(P; y) · wtC · a. This holds for all chains, proving

exΨ(P; y, a, b) · a = ∑
C chain in P

PoinC(P; y) · wt+C . (1.2)
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The fact that 1̂ is included in every chain in the computation of the chain Poincaré
polynomial is inspired by the setting of hyperplane arrangements; see [1, 22] for more
details. A (central, real) hyperplane arrangement A is a finite collection of hyperplanes
in Rd, all of which have a common intersection. The lattice of flats L of A is the poset of
subspaces of Rd obtained from intersections of subsets of the hyperplanes, ordered by
reverse inclusion. The open, connected components of the complement Rd \ A are called
(open) chambers. The set of (closed) faces Σ is the set of closures of chambers of A, together
with all possible intersections of closures of chambers (ignoring intersections which are
empty). This set comes equipped with a natural partial order by reverse inclusion, and
for this reason we refer to Σ as the face poset of A. There is an order-preserving, rank-
preserving surjection supp : Σ ↠ L sending a face to its affine span [8, Proposition 4.1.13].
This map extends to chains, and the fiber sizes are given, for C = {C1 < · · · < Ck} ⊆ L,
by

#supp−1(C) =
k

∏
i=1

Poin([Ci, Ci+1]; 1) = PoinC(P; 1), (1.3)

with Ck+1 = 1̂; see [8, Proposition 4.6.2]. This is the key motivation for the next definition.

Definition 1.4. The pullback ab-index of P is

Ψpull(P; a, b) = exΨ(P; 1, a, b).

Let Σ be the face poset and L the lattice of flats of a real central hyperplane arrange-
ment. Since Σ may not have a unique minimum element, we formally add a minimum
element 0̂ and let Σ ∪ {0̂} be the resulting poset. Now, Equation (1.3) relates the ab-index
of the face poset and the pullback ab-index of the lattice of flats by

Ψ(Σ ∪ {0̂}; a, b) = a · Ψpull(L; a, b) . (1.4)

Note that this relates the evaluation of exΨ(Σ ∪ {0̂}; y, a, b) at y = 0 to the evaluation of
exΨ(L; y, a, b) at y = 1. Equation (1.3) and thus also Equation (1.4) hold indeed in the
more general context of oriented matroids.

Example 1.5. The pullback ab-index of the poset from Example 1.2 is

Ψpull(L; a, b) = exΨ(L; 1, a, b) = a2 + 5ba + 5ab + b2 .

Consider the arrangement of three lines in the plane through a common intersection as
shown below on the left in a way that emphasizes its face structure. Its lattice of flats is
the poset L from Example 1.2. To the right, we draw its face poset Σ with 0̂ included.
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The ab-index of Σ ∪ {0̂} can be computed as

a3 + 5aba + 5a2b + ab2 = a(a2 + 5ba + 5ab + b2) = a · Ψpull(L; a, b) .

1.2 Main results

The main results of this paper concern R-labeled posets. These form a large family of
posets including distributive lattices, geometric lattices, and semimodular lattices. In order
to state Theorem 1.6, we introduce a combinatorial statistic on maximal chains of these
posets and use this to describe the extended ab-index. In Section 2, we briefly discuss
this combinatorial statistic for general edge labeled graded posets.

A function λ from the set of cover relations X ⋖ Y in P into the positive integers is
an R-labeling of P if, for every interval [X, Y] in P, there is a unique maximal chain
X = Mi ⋖Mi+1 ⋖ · · ·⋖Mj = Y such that

λ(Mi,Mi+1) ≤ λ(Mi+1,Mi+2) ≤ · · · ≤ λ(Mj−1,Mj).

We say a poset P is R-labeled if it is finite, graded, and admits an R-labeling. Throughout
this section, we consider R-labeled posets with a fixed R-labeling λ.

The first result is a combinatorial statistic describing the coefficients of the extended
ab-index which witnesses their nonnegativity. It generalizes [6, Corollary 7.2] and
also reproves it using purely combinatorial arguments. For a maximal chain M =
{M0 ⋖M1 ⋖ · · ·⋖Mn} in P, define the monomial u(M) = u1 · · · un in a, b given by
u1 = a and for i ∈ {2, . . . , n} by

ui =

{
a if λ(Mi−2,Mi−1) ≤ λ(Mi−1,Mi) ,
b if λ(Mi−2,Mi−1) > λ(Mi−1,Mi) .

(1.5)

Now, let E ⊆ {1, . . . , n}, viewed as a subset of the cover relations in the chain M. Define
the monomial u(M, E) = v1 . . . vn in a, b to be obtained from u(M) by

• replacing all variables a by b at positions i ∈ {1, . . . , n} if i ∈ E and
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• replacing all variables b by a at positions i ∈ {2, . . . , n} if i − 1 ∈ E.

In particular, we have u(M, ∅) = u(M), and v1 = b if and only if 1 ∈ E.

Theorem 1.6. Let P be an R-labeled poset of rank n. Then

exΨ(P; y, a, b) = ∑
(M,E)

y#E · u(M, E)

where the sum ranges over all maximal chains M in P and all subsets E ⊆ {1, . . . , n}.

When P is a geometric lattice, setting y = 0 in Theorem 1.6 recovers [6, Corollary 7.2].
Specifically Ψ(P; a, b) = ∑M u(M), where the sum ranges over all maximal chains M =
{M0 ⋖ · · ·⋖Mn}.

Example 1.7. The poset from the previous examples admits the R-labeling given below
on the left. On the right, we collect the relevant data to compute the combinatorial
description of the extended ab-index.

1̂

α1 α2 α3

0̂

1 2 3

2 1 1

E y#E 0̂ ⋖ α1 ⋖ 1̂ 0̂ ⋖ α2 ⋖ 1̂ 0̂ ⋖ α3 ⋖ 1̂

{} 1 aa ab ab
{1} y ba ba ba
{2} y ab ab ab
{1, 2} y2 bb ba ba

Then exΨ(L; y, a, b) = aa + (3y + 2y2)ba + (2 + 3y)ab + y2bb.

Corollary 1.8. For an R-labeled poset P, we have

exΨ(P; y, a, b) = ω
(
Ψ(P; a, b)

)
where the substitution ω replaces all occurrences of ab with ab + yba + yab + y2ba and then
simultaneously replaces all remaining occurrences of a with a + yb and b with b + ya.

Using Corollary 1.8, the monomials u(M, E) in Theorem 1.6 capture the same infor-
mation as the generalized descent sets on réseaux as defined by Bergeron, Mykytiuk, Sottile,
and van Willigenburg in [5, Section 7] in the context of quasisymmetric functions. The
next corollary can be seen as a refinement of [27, Proposition 2.2] and of [5, Theorem 7.2],
stated in terms of ab-indices rather than quasisymmetric functions. Both can be seen as
the special case for the pullback ab-index: the first for enriched P-partitions and the second
for general edge-labeled graded posets, compare with Section 2. We start by describing
their relevant combinatorics in the present notation. Let M be a maximal chain with
u(M) = u1 . . . un, and let

Peak(M) =
{

i ∈ {2, . . . , n} | ui−1 = a, ui = b
}
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denote its peak set. A set S ⊆ {1, . . . , n} is then M-peak-covering if

Peak(M) ⊆ S ∪ {i + 1 | i ∈ S} .

For u(M, S) = v1 · · · vn, let b-out(M, S) be the number of positions i ∈ {1, . . . , n} \ S
where vi = b.

Corollary 1.9. For an R-labeled poset P of rank n, we have

exΨ(P; y, a, b) = ∑
(M,S)

(1 + y)#S · yb-out(M,S) · wtS ,

where the sum ranges over all maximal chains M and all M-peak-covering subsets S ⊆ {1, . . . , n}
and where wtS = w1 . . . wn as given in Equation (1.1).

Another consequence of Corollary 1.8 is that the Poincaré polynomial of P is in fact
encoded in its ab-index. To see this, we define another substitution ι, which deletes the
first letter from every ab-monomial, so ι(a3ba+ (1+ y)ba) = a2ba+ (1+ y)a for example.
This gives us a way to obtain the Poincaré polynomial from the ab-index, a result which
is similar in spirit to [6, Proposition 5.3].

Corollary 1.10. For an R-labeled poset P of rank n, the Poincaré polynomial is the coeffcient of
an−1 in ι

(
ω
(
Ψ(P; a, b)

))
.

Corollary 1.8 generalizes [6, Theorem 3.1] relating the ab-index of the lattice of flats of
an oriented matroid with the ab-index of its face poset. As a consequence, we see that
exΨ(P; y, a, b) is akin to a refinement of a cd-index. We make this observation precise in
the following corollary.

Corollary 1.11. For an R-labeled poset P, there exists a polynomial Φ(P; c1, c2, d) in noncom-
muting variables c1, c2, d such that

exΨ(P; y, a, b) = Φ(P; a + yb, b + ya, ab + yba + yab + y2ba).

In particular, the pullback ab-index Ψpull(P; a, b) is a polynomial in noncommuting variables
c = a + b and 2d = 2(ab + ba).

Remark 1.12 (The synthetic cd-index). Recall that the cd-index of a poset exists if the
ab-index can be written as a polynomial in c = a + b and d = (ab + ba). Bayer and
Klapper proved a conjecture of Fine that a poset satisfies the generalized Dehn-Sommerville
relations if and only if its cd-index exists and has integer coefficients [4, Theorem 4]. The
cd-index of an Eulerian poset always exists (see [3, Theorem 2.1]) and has nonnegative
coefficients when it comes from the face poset of a shellable regular CW sphere like the
face poset of a convex polytope [26, Theorem 2.2] (or, more generally, from a Gorenstein*
poset [17, Theorem 1.3]).
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In [6], Billera, Ehrenborg, and Readdy give an elegant alternative proof of the non-
negativity of the cd-index of the face poset of an oriented matroid. They use the support
map from Equation (1.3) to relate the ab-index of the lattice of flats to the ab-index of
the face poset. In our language, they interpret (using posets and polytopes) the extended
ab-index of an oriented matroid at y = 0 and y = 1. Every matroid admits an extended
ab-index, and the evaluation at y = 0 is the ab-index of its lattice of flats. This raises
the natural question whether there is a geometric or poset-theoretic interpretation of the
y = 1 evaluation of the extended ab-index. For this reason, we call the y = 1 evaluation
of the extended ab-index rewritten in terms of c and d the synthetic cd-index.

Example 1.13 (The Fano matroid). Setting y = 1 and then c = a + b and d = ab + ba
in the extended ab-index of the Fano matroid [8, Example 6.6.2(1)] gives the synthetic
cd-index of the Fano matroid: 12cd + 28dc + c3. A convex 3-polytope with this cd-index
would have 30 vertices and 14 facets; see [21]. Thus its polar dual polytope would have
14 vertices and 30 facets, contradicting the the Upper Bound Theorem [20, p.180].

Example 1.14 (The Mac Lane matroid). We compute the synthetic cd-index of the Mac
Lane matroid; see [9, page 114] and [29, Section 2]. We get the synthetic cd-index 18cd +
32dc + c3, which is the cd-index of a polytope!

Remark 1.15 (Oriented interval greedoids). The argument used for oriented matroids
and their lattices of flats also applies to oriented interval greedoids, where the analogue
of Equation (1.3) is given in [24, Theorem 6.8]. Since the lattice of flats of an interval
greedoid is a semimodular lattice, it admits an R-labeling; see [7, Theorem 3.7]. Applying
Corollary 1.8 and setting y = 1 gives [24, Corollary 6.12].

Remark 1.16 (Distributive lattices & r-signed Birkhoff posets). Ehrenborg discussed an
ω-like substitution for arbitrary distributive lattices [11]. Remarkably, that substitution
is equivalent to the substitution in Corollary 1.8 for y = r − 1 ∈ N. In that case of
distributive lattices, the parameter r is a fixed integer (rather than a variable) carrying
information about the fiber sizes of a certain support map. For a (not necessarily graded)
finite poset P, the r-signed Birkhoff poset Jr(P) is the collection of pairs (F, f ) where F is an
order ideal in P and f is a map from the maximal elements in F to the set {1, . . . , r}, with
order relation given by

(F, f ) ≤ (G, g) ⇐⇒ G ⊆ F and f (x) = g(x) for all x ∈ max(F) ∩ max(G) .

These posets were defined in [15, 11] and studied in connection to the Birkhoff lattice
J(P) = J1(P). The map z : Jr(P) → J(P) with (F, f ) 7→ F is an order- and rank-preserving
poset surjection for which the fiber size of a chain C in J(P) can—in the notation from the
previous sections—be computed by #z−1(C) = PoinC(J(P); r − 1), see [11, Proposition
5.2]. Since distributive lattices are modular, they admit R-labelings; see [7, Theorem 3.7].
Thus, applying Corollary 1.8 for y = r − 1 gives the first part of [11, Theorem 4.2].
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We next turn toward the coarse flag Hilbert–Poincaré series introduced and studied
in [19]. The numerator of this rational function is defined in [19, Equation (1.13)], and we
extend this definition to graded posets via

Num(P; y, t) = ∑
C chain in P\{0̂,1̂}

Poin{0̂}∪C(P; y) · t#C(1 − t)n−1−#C ∈ Z[y, t] .

By removing the first letter of every ab monomial and then specializing via a 7→ 1 and
b 7→ t we obtain a proof of [19, Conjecture E] and its generalization to R-labeled posets:

Corollary 1.17. For an R-labeled poset P, the coefficients of Num(P; y, t) are nonnegative.

Together with Corollary 1.10, we obtain Poin(P; y) = [t0] Num(P; y, t). The substitu-
tions in the previous corollaries show that Theorem 1.6 also gives analogous combinatorial
interpretations for the coefficients of ι

(
exΨ(P; y, a, b)

)
and of Num(P; y, t).

Remark 1.18 (Geometric semilattices). Note that [19, Conjecture E] concerns all hy-
perplane arrangements (central and affine). While the intersection posets of central
hyperplane arrangements are geometric lattices and, thus, admit R-labelings [7, Example
3.8], the intersection posets of affine arrangements are part of a more general family called
geometric semilattices, first explicitly studied by Wachs and Walker in [28]. A theorem of
Ziegler shows that if L is a geometric semilattice, then L ∪ {1̂} admits an R-labeling [30,
Theorem 2.2]. Thus Theorem 1.6 holds for intersection posets of affine arrangements.

Remark 1.19 (Implications for other zeta functions). The coarse flag Hilbert–Poincaré
polynomial of a poset P comes from a natural specialization of its flag Hilbert–Poincaré
series. The flag Hilbert–Poincaré series is a rational function in Q[y](tx | x ∈ P) given by

fHPP(y, t) = ∑
C chain in P\0̂

PoinC(P; y) ∏
x∈C

tx

1 − tx
.

The coarse flag Hilbert–Poincaré polynomial Num(P; y, t) is obtained by setting all the tx
equal to t and considering (1 − t)rank(P)fHPP(y, t). Different specializations of fHPP(y, t)
yield other well-studied zeta functions like local Igusa zeta functions of hyperplane
arrangements [10], motivic zeta functions of matroids from [16], and the conjugacy class
counting zeta functions of certain group schemes defined in [23]. Moreover, each of
these is obtained from fHPP(y, t) by a monomial substitution of the form y = −p−1 and
tx = pλx tµx for some integers λx and µx, where p is a prime and t = p−s for a complex
variable s; see [19, Remark 1.3].

The specialization of Num(P; y, t) at y = 1 was studied further for matroids and
oriented matroids by the second author and Kühne in [18], who showed Num(P; 1, t) is
the sum of h-polynomials of simplicial complexes related to the chambers if P is the
lattice of flats of a real central hyperplane arrangement. The following corollary proves a
generalized version of the conjectured lower bound from [18, Conjecture 1.4].
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Corollary 1.20. Let P be an R-labeled poset of rank n. The coefficient of tk in Num(P; 1, t) is
bounded below by (n−1

k ) · Poin(P; 1).

2 Connection to quasisymmetric functions

Theorem 1.6 shows that the extended ab-index of an R-labeled poset has nonnegative
coefficients. Nonnegativity may fail, however, for posets that do not admit R-labelings.
For example, the weak order for the symmetric group S3 (the hexagon poset) does not
admit an R-labeling and has extended ab-index

aaa + (−1 + 2y)aab + (1 + 2y)aab + y(2 + y2)baa + (2y2 − 1)abb

+ (−y3 + 2y2)bab + y2(2 + y)bba + y(3y2 + 2y − 2)bbb .

Using the right-hand side in Theorem 1.6, we define the (combinatorial) extended ab-index
of a finite edge-labeled graded poset P, which is manifestly positive, via

cxΨ(P; y, a, b) = ∑
(M,E)

y#E · u(M, E) ∈ N[y]⟨a, b⟩ .

While cxΨ is in general not linked to the Poincaré polynomial, the proofs of Corollar-
ies 1.8 and 1.9 still hold. In particular, cxΨ(P; y, a, b) is a polynomial in c1 = a + yb, c2 =
b+ ya and d = ab+ yba+ yab+ y2ba. This means that 2 · cxΨ(P; 1, a, b) is an ab-analogue
of the peak enumerator from [5, Definition 7.1]. The remainder of this section is devoted to
presenting a conjecture inspired by this specialization.

Let S = {s1 < · · · < sk} be a subset of {1, . . . , n}. The monomial quasisymmetric
function MS is the power series

MS = ∑
i1<i2<···<ik<ik+1

xs1
i1

xs2−s1
i2

· · · xsk−sk−1
ik

xn+1−sk
ik+1

∈ Q[[x1, x2, x3, . . . ]] .

Note that MS is homogeneous of degree n + 1 and—although we surpress it in the
notation—implicitly depends on n. The ring of quasisymmetric functions QSym is the
(linear) span of M• = 1 and all MS for n ≥ 0. Following [12, Section 3], we define a
vector space isomorphism Ξ : Q⟨a, b⟩ −→ QSym defined by sending wtT to MT. Using
the isomorphism Ξ, we can view the map ω from Corollary 1.8 as a map from QSym
to QSym ⊗ Q[y] given by FS 7→ ω(FS) = Ξ

(
ω(mS)

)
, where FS is given in [13, Equation

2]. In [27, Equation (1.8)], Stembridge shows how to obtain (skew) Schur functions
as P-partition enumerators of certain posets given in [27, Section 1.3]. The following
conjecture1 concerning the Schur functions has been verified for all integer partitions of
size at most 11 using SageMath.

1This conjecture was exhibited at the 90th Séminaire Lotharingien de Combinatoire in Bad Boll, Germany in
September 2023 in collaboration with Darij Grinberg.
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Conjecture 2.1. For any partition λ ⊢ n, the quasisymmetric function ω(sλ) is symmetric and
Schur positive. Specifically, for each µ ⊢ n, there exist cµ

λ(y) ∈ N[y] such that

ω(sλ) = ∑
µ⊢n

cµ
λ(y) · sµ .
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