MOST SMALL p-GROUPS HAVE AN AUTOMORPHISM OF
ORDER 2

JOSHUA MAGLIONE

ABSTRACT. Let f(p,n) be the number of pairwise nonisomorphic p-groups of
order p”, and let g(p,n) be the number of groups of order p” whose automor-
phism group is a p-group. We prove that the limit, as p grows to infinity, of
the ratio g(p,n)/f(p,n) equals 1/3 for n = 6, 7.

1. INTRODUCTION

In [8, p. 362], Mann poses the following question. If f(p,n) is the number of
pairwise nonisomorphic groups of order p" and g(p,n) the number of groups of
order p™ whose automorphism group is a p-group, then does
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Theorems of Helleloid-Martin and Martin suggest this ought to be true [6,9].
Using the classifications of groups of order p® and p” developed by Newman,
O’Brien, and Vaughan-Lee [10,11], we have access to the prominent families (e.g.
large isoclinism classes), allowing for asymptotic statements about these groups.
We prove the following theorem.

Theorem 1.
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It is also sensible to test Mann’s hypothesis on the current database of p-groups
[10,11]. This is done in [6, Table 1] for groups of order p™ where p < 5 and n < 7.
There is a technical challenge when increasing the values of either p or n, and this
has only recently become possible by work of Brooksbank, Wilson, and the author
to improve isomorphism testing [3,7,14]. We expand known tables by including
larger values of p and n, see Table 1. Even with the state of the art algorithms,
our tables required several months of computation on a computer running MAGMA
V2.21-5 with Intel Xeon W3565 3.20 GHz micro-processors.

2. PRELIMINARIES

Throughout, all groups are finite. For g, h, k € G, we set [g,h] = g~ h~1gh and
lg,h, k] = [[g,h], k]. Moreover, for X,Y C G, let [X,Y] = ([z,y] | x € X,y € Y).
Weset Q(G) =(g€ G:g” =1) and G = (¢ : g € G). We let Z, denote the
cyclic group of order p.

Let 71(G) = m(G) = G and for all i € ZT set v,41(G) = [vi(G),G] and
Ni+1(G) = [n:(G), G|n:(G)P. For a nilpotent group G, the class (p-class) of G

Date: November 10, 2016.



2 JOSHUA MAGLIONE

p|p° P’ p® P’

2| 211 (79.03%) 2,067 (88.79%) 54,463 (97.10%) 10,477,331 (99.84%)
3130 (5.95%) 2,119 (22.76%) 1,002,216 (71.79%)

5| 65 (9.50%) 11,895 (34.68%)

7191 (10.58%) 42,208 (37.30%)

11| 189 (15.86%) 286,385 (38.15%)

13 | 241 (16.33%)
17 | 389 (20.01%)
19 | 463 (20.45%)

TABLE 1. The number of isomorphism types of p-groups whose
automorphism group is a p-group.

is the largest index where v;(G) # 1 (;(G) # 1). If G is p-class ¢, then H is an
immediate descendant of G if H is p-class ¢+ 1 and G = H/neq1(H).

2.1. Bilinear maps. Let K be a field, and let U, V', and W be K-vector spaces. A
K-bilinear map (K-bimap) is a function o : U x V = W such that, for all u,u’ € U,
v, o' €V,and ke K

(utku')ov=uov+k(u ov) &  wo(v+kv)=uov+k(uov).

The radicals of o are Ut ={v € V |Uov=0}and V* ={u €U |uoV = 0}.
A bimap is nondegenerate when U+ = V1 = 0 and is fully-nondegenerate when, in
addition to begin nondegenerate, W =U o V.

Two bimaps o : VxV »— W and e : V' x V' »— W' are pseudo-isometric if there
exists isomorphisms f and ¢ making the diagram commute

oV X V—/1W

bl s

oV X V! w’.
Additionally, bimaps o and e are isometric if they are pseudo-isometric and if
W = W' and g = 1. The pseudo-isometry and isometry groups are denoted by

Ulsom(o) and Isom(o) respectively.
Associated to bimaps is the adjoint ring

Adj(o) ={(f,9) € End(U) x End(V)°? : Yu € U,v € V,uf ov = uo gv},

which plays a major role in computing ¥Isom(o) and Isom(o) [3,4].

2.2. Isoclinism. Groups G and H are isoclinic if there exists isomorphisms ¢ :
G/Z(G) - H/Z(H) and ¢ : G' — H' such that the following diagram commutes

e :G/Z2(G) x G/Z2(G) —— &
I
[lg :H/Z(H)x H/Z(H) —— H’,
see [5] for more details. When G is p-class 2, G/Z(G) and G’ are elementary

abelian, and [,]g is a Z,-bilinear map. Hence, an isoclinism from G to H is a
pseudo-isometry from the bimaps [, ]¢ to [,]x.
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2.3. Central extensions of elementary abelian p-groups. Suppose G is a p-
group of p-class 2, and let Z be the isoclinism class containing (. Additionally,
suppose 1 - A —- G — B — 1 is a central extension. Using the Universal
Coefficients Theorem, we get a lower bound on the number of groups in Z; see [1]
for a similar technique.

Theorem 2 (Universal Coefficients Theorem [13, Ch. 5]). If A and B are abelian
groups, then the following is a short exact sequence of groups

1 — Ext(B,A) — H?*(B,A) — Hom(B A B, A) — 1.

The groups H?(B, A) and Ext(B, A) can be interpreted as the set of all cen-
tral and abelian extensions of A by B, respectively. Furthermore, Ext(B, A) is
isomorphic to Hom(B, A).

We are concerned with the case when A = 1»(G) = Z(G) = Zj and B =
G/72(G) =2 Zb. For groups G, H € I, we identify G/v2(G) = B = H/v2(H) and
72(G) = A = v2(H), so that an isomorphism from, say, G/v2(G) to H/v2(H) is
contained in Aut(B) = GL(b,p). From h : BA B — A, we construct a fully-
nondegenerate, alternating Z,-bimap [,] = A" : B x B — A such that [b,b/] =
(b AV )h. The group Wlsom([,]) acts on Hom(B, A): for (p, ) € ¥som([,]) and
f € Hom(B, A),

fled) — o .

Suppose G and H are central extensions of A by B, determined by f, ' €
Hom(B, A) and h,h’ € Hom(B A B, A) respectively. If there exists (p,$) €
GL(b,p) x GL(a,p) such that (p,$) is a pseudo-isometry from A" to A and
' =¢ L fp, then G = H. This implies that |Z| > | Hom(B, A)|/|®Isom(],])|.

We now consider how this relates to the automorphism group of G. We let
Caut(@)(G/72(G)) denote the subgroup of Aut(G) that induces the identity on the
quotient G/~2(G), and hence, is a p-group. The following is an exact sequence

1 — Caut(c)(G/72(G)) — Aut(G) — WIsom([,]).

Since G is a central extension of A by B, there exists f € Hom(B, A) and h €
Hom(BAB, A) for G. Therefore, the image of Aut(G) in WIsom(],]) is the subgroup
stabilizing f. Since G is class 2, the following is an exact sequence

(3) 1— CAut(G)(G/’YQ(G)) — Aut(G) — Stab\Hsom([,])(f) — 1

3. LOWER BOUNDS

We prove that the limit in Theorem 1 is bounded below by 1/3 in two different
cases: n =7 and n = 6.

3.1. The lower bound for n = 7. We first consider the groups of order p’. For
a fixed odd prime p, define

(4) P ={a,b,c,d | [c,a][d,b] ", [d,a],[c,b],class 2, exponent p).
Note that Z(P) = ~2(P) = ®(P). We consider the set of groups isoclinic to P,
denoted Z. If G € Z, then Wsom([, |¢) = ¥som([, |p), so set [,] = [,]p-

Let V = P/P’ and W = P’. The adjoint algebra of o : VXV — W is a x-algebra
with the symplectic involution:

A
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More specifically,

(5) AAdj(o){q]‘g J\HW AgtD:MeMg(zp)}.

Observe that
6) VAV =VV/{(uf)@v—u® (vg):Vu,v e V.V(f,g) € A) =XW.

If ¢ is such an isomorphism then (1, ) is a pseudo-isometry from A4 to o. There-
fore, UIsom(A 4) = Wlsom(o). Furthermore, Adj(o) is a *-simple algebra isomorphic
to My(Z,) with the symplectic involution and, by equation (5), is irreducibly rep-
resented on a two dimensional vector space. By [4, Theorems 1.5 & 4.5]

(7) WUsom(o) = GSp(2, p) ®z, GL(2,p),

where GSp(n, p) = Sp(n,p) x Z,.
The number of pairwise non-isomorphic groups in the isoclinism class Z is bounded
below by |Hom(Zy,Z3)|/|Wsom([,]p)|. Hence, by equation (7), there are at least

| Hom(Z4, Z2)|
(8) PP
‘ GSp(?,p) ®Zp GL(27p)‘

groups. We state a lemma which follows from the orbit-stabilizer theorem.

=p° +p" +3p° +3p> + 6p + 6 + o(1)

Lemma 9. Let Z be an isoclinism class of groups which are extensions of elemen-
tary abelian groups A by B, and let WIsom(Z) be the pseudo-isometry group. If s is
the number of orbits in T such that Stabyisom(z)(Hom(B, A)) = 1, then

. | Hom(B, A)|
~ | Usom(Z)]
Proposition 10.

Q

p=oe f(p, 7
Proof. Let P be defined as in equation (4). By equation (8) and Lemma 9, the
number of homomorphisms in Hom(Zg,Zg) with a trivial stabilizer is bounded

below by p® + O(p*). From the short exact sequence in (3), g(p,7) > p° + O(p?).
From [11, Theorem 1], if p > 5, then

fp,7) = 3p° +O(").
Therefore, for p > 5, g(p,7)/f(p,7) > 1/3 — €, where €, — 0 as p — oc. O

>

W =

~

3.2. The lower bound for p°®. Consider the set of groups with the following
presentations. For 0 <r < s < p, let

P(r,s) = {(a,b,c| [c,a][b,a,a] ", [c,b], [b,a,c],
aP[b,a,b] ", bP[b,a,b]~*, b, a,a] " [b,a,b] "1, p-class 3).
Additionally, for 0 <t < (p—1)/2, 0 < u < p, and a non-square w € Z,, let
Q(t,u) = (a,b,c| [c,a][b,a,b] ", [c,b][b,a,a] ™%, [b,a, ],
al[b,a,a] "t bP[b,a,a] ", cP[b,a,b] !, p-class 3).

We show that most of the groups P(r, s) and Q(¢,u) have an automorphism group
which is a p-group. However, there are a few cases with p’-automorphisms.
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Lemma 11. The groups P(r,r) and Q(0,u) have a p’-automorphism.

Proof. The map of P(r,r) which sends a to b='c", b to a='c", and ¢ to c[b,a]™!
induces an automorphism. In addition, the map of Q(0, ) which fixes a and ¢ but
inverts b induces an automorphism. O

To show that nearly all groups P(r, s) and Q(t,u) have an automorphism group a
p-group, we compute the automorphism groups of their Lie rings using the Lazard-
Mal’cev correspondence. For details on this technique, see [10, Section 4]. To
make the computations easier, we determine a characteristic composition series
for the groups. Therefore, we show that the corresponding parabolic subgroup
A(G) < GL(3,p) must be trivial. Because the torus is not split for these groups,
this is not a trivial computation. In the proceeding lemma, we solve nonlinear
equations to compute the automorphism group of the associated Lie rings.

Lemma 12. If G € {P(r,s),Q(t,u) | r # s,t # 0}, then Aut(G)|q/aq) = 1.

Proof. Note that H = (¢,G’) is characteristic as it is the radical of [,]g : G/G’ X
G/G — G'/v3(G). A characteristic composition series of G is given in Figure 1.

(‘; For G = P(r, s):
7UG) HP — ([b,a,allb, a,b)),
Q G _ —r/s /
( )\ /H Q(G) = (ab™"/*,G").
G/
73(‘0) For G = Q(t,u):
o H? = (b, a, b)),
\ Q(G) = (a b, G").
1

FIGURE 1. Some characteristic subgroups of G.

First, consider G = P(r, s), where r # s. We use
(b.ab™/% e, [b, 0] b, a,b"7*, [b.a,al, b, ][b, . ]

as a consistent generating set, determined by the composition series in Figure 1.
Therefore, the Lie ring of P(r, s) has the following presentation

Rp = (x1,...,26 | pr1 = s(—25 + ), pr3 = T,
ToT1 = T4, T3T2 = T5, T4X1 = T5 — L6,
X429 = —(r/s+ Das + (r/s)xg),

all omitted power-commutator relations are assumed to be trivial.

Suppose that a,...,( € Z, and the following induces an automorphism of Rp
1 — ary + Brs + yrs, T4 — adzy — yoTsH,
Zo > 0o, x5 — (e — 6¢(r/s + 1))xs + 6Cr/sxe,
T3 > €x3 + (xy, Te > €Xg.

Such an automorphism must satisfy the following equations
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aC+ Be=BC(r/s+1),  &*6—afdr/s=e—d(r/s,

BCr/s = al, er/s —ad’r)s = 6Cr/s(r/s + 1),
de —a=¥8((r/s+1), ad?(r/s+1) = de(r/s+ 1) — 6¢(r/s + 1)2,
v —as = se — &(r, aﬁé(r/3+1):a26+5c(r/s+l)—(5e.

We have two cases, either ( =0 or ( # 0. If ( = 0, then only the trivial automor-
phism satisfies the above equations. If { # 0, then

(r/s —1)(r/s+1)> =0 r/s=1.

Therefore, since 7 # s, Aut(G)|q/o(q) = 1.
Finally, consider G = Q(¢, ), where ¢ # 0, and use

(a.a7/"b,c,[b.a],b,a,d], [b.a.b])
as a consistent generating set. The Lie ring for G has the following presentation

RQ = <CL‘17. -5 Te | pr1 = txs, pr3 = g,
Loy = Xy, T3T1 = Tg, T3T2 = wrs — (u/t)xs,
T4y = x5, TaTy = —(u/t)rs + x6),

again, all trivial power-commutator relations are omitted.

Suppose a, ..., € Z, and the following induces an automorphism of Rg
1 — axy + Bro + yrs, x4 > adzxy + wydxs — yo(u/t)xe,
ZTo > 02, T5 — atxs + vz,
T3 > €xs + (xy, T — €Tg.

Such an automorphism must satisfy the following equations

wpe+ af = BC(u/t), a6 = afé(u/t) + at,
ae+ B0 = e+ eBu/t), v = afs,
wde = wat + 6¢(u/t), au = ad?(u/t),
6C + e(u/t) = wy + de(u/t), €= ad® +y(u/t).

If B = 0 then only the trivial automorphism satisfies the above equations. If 5 # 0,
then the above equations cannot be satisfied as t # 0. Therefore, when t # 0, we

must have 8 = 0, and hence, Aut(G)|g/e(q) = 1. O
Proposition 13.

i 92 6) > 1

p—oo f(p,6) — 3

Proof. There are p? groups isomorphic to P(r, s) or Q(t,u) for the various param-
eter values [12, p.18, (6.172) & (6.179)]. From Lemma 11, only 2p of those groups
have an involution, and from Lemma 12, the remaining automorphism groups are p-
groups because Aut(G)|q/a(q) = 1. Therefore, g(p,6) > p? — 2p. By [10, Theorem
1], if p > 5, then

f(p,6) = 3p* + O(p),

so g(p,6)/f(p,6) > 1/3 — €,, where ¢, — 0 as p — . a
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4. UPPER BOUNDS

We prove that the limit of the ratio in Theorem 1 is bounded above by 1/3, so
together with Propositions 10 & 13, this finishes the proof of Theorem 1. The proof
of the following proposition significantly depends on finding large isoclinism classes
in the classifications of groups of order p® and p” [10,11]. Throughout the proof we
reference the Lie rings in the database of Eick and Vaughan-Lee [12]; however, we
present the group version of the Lie rings, using the Lazard correspondence.

Proposition 14. Forn € {6,7},
i 921
p—oe f(p,n)

Proof. Fix p > 5. First we consider groups of order p® that are immediate descen-
dants of

| =

<

|
w

P ={a,b,c|[c,a] = [c,b] = 1,class 2,exponent p).
There are (p — 1)(p — 3) immediate descendants of P, of order pS, that satisfy
equivalent relations to the following [12, p. 17, (6.163) & (6.164)]

[e,a] = [b, a,al,
[e,b] = [bya,c] =cP =1.

Moreover, there are p? + (p + 1)/2 — ged(p — 1,4)/2 immediate descendants of P,
of order pb, that satisfy equivalent relations to the following [12, p. 18, (6.178)].

(15)

[e,a] = [b,a,b],
(16) [e,b] = [b,a,al”,
P =1.

We assume that w is a non-square modulo p. Although the above groups satisfy
more relations, the map that inverts a and b and fixes ¢ induces an automorphism
of each of these groups.

Now, we consider groups of order p” that are immediate descendants of

Q = {a,b,c| [e,b] = 1,class 2, exponent p).
There are p® + p* +p® + O(p?) immediate descendants of Q, of order p”, that satisfy
equivalent relations to the following [12, pp. 89-90, (7.773) & (7.774)]
1=e,b] = [b,a,d,
(17) [b,a,a] = [c,a,c],
[c,a,a] = [b,a,b]”.
When p =2 mod 3, we set w = 1; otherwise, w is either a non-square or w = 1. In

addition, there are p® + p* + p® + O(p?) immediate descendants of @, in total, that
satisfy equivalent relations to one of the following [12, p. 92, (7.779) & (7.780)].

1=e,b] = [b,a,aq],
(18) [e,a,a]l = [b,a,b]"[b,a,d],
[c,a,c] = [b,a,b]”,
If p = 1 mod 3, set x = 0; otherwise, the values of = are found in [12, p. 92]. Again,

these groups satisfy more relations, but the map that inverts the generators a, b,
and ¢ induces an automorphism of these groups.
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From [10, Theorem 1] and [11, Theorem 1], if p > 5, then
f(p,6) =3p° + O(p),
Fp,7) = 3p” + O(p*).

We have shown that g(p, 6) < f(p,6)—2p*>—O(p) and g(p,7) < f(p,7)—2p°—O(p*).
Therefore, if n € {6, 7}, then g(p,n)/f(p,n) < 1/3+€,, wheree, - 0asp — co. O
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