
MOST SMALL p-GROUPS HAVE AN AUTOMORPHISM OF

ORDER 2

JOSHUA MAGLIONE

Abstract. Let f(p, n) be the number of pairwise nonisomorphic p-groups of

order pn, and let g(p, n) be the number of groups of order pn whose automor-
phism group is a p-group. We prove that the limit, as p grows to infinity, of

the ratio g(p, n)/f(p, n) equals 1/3 for n = 6, 7.

1. Introduction

In [8, p. 362], Mann poses the following question. If f(p, n) is the number of
pairwise nonisomorphic groups of order pn and g(p, n) the number of groups of
order pn whose automorphism group is a p-group, then does

lim
n→∞

g(p, n)

f(p, n)
= 1?

Theorems of Helleloid-Martin and Martin suggest this ought to be true [6, 9].
Using the classifications of groups of order p6 and p7 developed by Newman,

O’Brien, and Vaughan-Lee [10, 11], we have access to the prominent families (e.g.
large isoclinism classes), allowing for asymptotic statements about these groups.
We prove the following theorem.

Theorem 1.

lim
p→∞

g(p, 6)

f(p, 6)
= lim

p→∞

g(p, 7)

f(p, 7)
=

1

3
.

It is also sensible to test Mann’s hypothesis on the current database of p-groups
[10, 11]. This is done in [6, Table 1] for groups of order pn where p ≤ 5 and n ≤ 7.
There is a technical challenge when increasing the values of either p or n, and this
has only recently become possible by work of Brooksbank, Wilson, and the author
to improve isomorphism testing [3, 7, 14]. We expand known tables by including
larger values of p and n, see Table 1. Even with the state of the art algorithms,
our tables required several months of computation on a computer running Magma
V2.21-5 with Intel Xeon W3565 3.20 GHz micro-processors.

2. Preliminaries

Throughout, all groups are finite. For g, h, k ∈ G, we set [g, h] = g−1h−1gh and
[g, h, k] = [[g, h], k]. Moreover, for X,Y ⊆ G, let [X,Y ] = 〈[x, y] | x ∈ X, y ∈ Y 〉.
We set Ω(G) = 〈g ∈ G : gp = 1〉 and Gp = 〈gp : g ∈ G〉. We let Zp denote the
cyclic group of order p.

Let γ1(G) = η1(G) = G and for all i ∈ Z+ set γi+1(G) = [γi(G), G] and
ηi+1(G) = [ηi(G), G]ηi(G)p. For a nilpotent group G, the class (p-class) of G
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p p6 p7 p8 p9

2 211 (79.03%) 2,067 (88.79%) 54,463 (97.10%) 10,477,331 (99.84%)
3 30 (5.95%) 2,119 (22.76%) 1,002,216 (71.79%)
5 65 (9.50%) 11,895 (34.68%)
7 91 (10.58%) 42,208 (37.30%)

11 189 (15.86%) 286,385 (38.15%)
13 241 (16.33%)
17 389 (20.01%)
19 463 (20.45%)

Table 1. The number of isomorphism types of p-groups whose
automorphism group is a p-group.

is the largest index where γi(G) 6= 1 (ηi(G) 6= 1). If G is p-class c, then H is an
immediate descendant of G if H is p-class c+ 1 and G ∼= H/ηc+1(H).

2.1. Bilinear maps. Let K be a field, and let U , V , and W be K-vector spaces. A
K-bilinear map (K-bimap) is a function ◦ : U×V �W such that, for all u, u′ ∈ U ,
v, v′ ∈ V , and k ∈ K

(u+ ku′) ◦ v = u ◦ v + k(u′ ◦ v) & u ◦ (v + kv′) = u ◦ v + k(u ◦ v′).
The radicals of ◦ are U⊥ = {v ∈ V | U ◦ v = 0} and V ⊥ = {u ∈ U | u ◦ V = 0}.
A bimap is nondegenerate when U⊥ = V ⊥ = 0 and is fully-nondegenerate when, in
addition to begin nondegenerate, W = U ◦ V .

Two bimaps ◦ : V ×V �W and • : V ′×V ′ �W ′ are pseudo-isometric if there
exists isomorphisms f and g making the diagram commute

◦ :

• :

V × V

V ′ × V ′

W

W ′.

f f g

Additionally, bimaps ◦ and • are isometric if they are pseudo-isometric and if
W = W ′ and g = 1. The pseudo-isometry and isometry groups are denoted by
ΨIsom(◦) and Isom(◦) respectively.

Associated to bimaps is the adjoint ring

Adj(◦) = {(f, g) ∈ End(U)× End(V )op : ∀u ∈ U, v ∈ V, uf ◦ v = u ◦ gv},
which plays a major role in computing ΨIsom(◦) and Isom(◦) [3, 4].

2.2. Isoclinism. Groups G and H are isoclinic if there exists isomorphisms ϕ :
G/Z(G)→ H/Z(H) and ϕ̂ : G′ → H ′ such that the following diagram commutes

[, ]G :

[, ]H :

G/Z(G) × G/Z(G)

H/Z(H)×H/Z(H)

G′

H ′,

ϕ ϕ ϕ̂

see [5] for more details. When G is p-class 2, G/Z(G) and G′ are elementary
abelian, and [, ]G is a Zp-bilinear map. Hence, an isoclinism from G to H is a
pseudo-isometry from the bimaps [, ]G to [, ]H .
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2.3. Central extensions of elementary abelian p-groups. Suppose G is a p-
group of p-class 2, and let I be the isoclinism class containing G. Additionally,
suppose 1 → A → G → B → 1 is a central extension. Using the Universal
Coefficients Theorem, we get a lower bound on the number of groups in I; see [1]
for a similar technique.

Theorem 2 (Universal Coefficients Theorem [13, Ch. 5]). If A and B are abelian
groups, then the following is a short exact sequence of groups

1 −→ Ext(B,A) −→ H2(B,A) −→ Hom(B ∧B,A) −→ 1.

The groups H2(B,A) and Ext(B,A) can be interpreted as the set of all cen-
tral and abelian extensions of A by B, respectively. Furthermore, Ext(B,A) is
isomorphic to Hom(B,A).

We are concerned with the case when A = γ2(G) = Z(G) ∼= Za
p and B =

G/γ2(G) ∼= Zb
p. For groups G,H ∈ I, we identify G/γ2(G) = B = H/γ2(H) and

γ2(G) = A = γ2(H), so that an isomorphism from, say, G/γ2(G) to H/γ2(H) is
contained in Aut(B) ∼= GL(b, p). From h : B ∧ B → A, we construct a fully-
nondegenerate, alternating Zp-bimap [, ] = ∧h : B × B � A such that [b, b′] =
(b ∧ b′)h. The group ΨIsom([, ]) acts on Hom(B,A): for (ϕ, ϕ̂) ∈ ΨIsom([, ]) and
f ∈ Hom(B,A),

f (ϕ,ϕ̂) = ϕ−1fϕ̂.

Suppose G and H are central extensions of A by B, determined by f, f ′ ∈
Hom(B,A) and h, h′ ∈ Hom(B ∧ B,A) respectively. If there exists (ϕ, ϕ̂) ∈
GL(b, p) × GL(a, p) such that (ϕ, ϕ̂) is a pseudo-isometry from ∧h to ∧h′

and
f ′ = ϕ−1fϕ̂, then G ∼= H. This implies that |I| ≥ |Hom(B,A)|/|ΨIsom([, ])|.

We now consider how this relates to the automorphism group of G. We let
CAut(G)(G/γ2(G)) denote the subgroup of Aut(G) that induces the identity on the
quotient G/γ2(G), and hence, is a p-group. The following is an exact sequence

1 −→ CAut(G)(G/γ2(G)) −→ Aut(G) −→ ΨIsom([, ]).

Since G is a central extension of A by B, there exists f ∈ Hom(B,A) and h ∈
Hom(B∧B,A) for G. Therefore, the image of Aut(G) in ΨIsom([, ]) is the subgroup
stabilizing f . Since G is class 2, the following is an exact sequence

(3) 1 −→ CAut(G)(G/γ2(G)) −→ Aut(G) −→ StabΨIsom([,])(f) −→ 1.

3. Lower bounds

We prove that the limit in Theorem 1 is bounded below by 1/3 in two different
cases: n = 7 and n = 6.

3.1. The lower bound for n = 7. We first consider the groups of order p7. For
a fixed odd prime p, define

(4) P = 〈a, b, c, d | [c, a][d, b]−1, [d, a], [c, b], class 2, exponent p〉.
Note that Z(P ) = γ2(P ) = Φ(P ). We consider the set of groups isoclinic to P ,
denoted I. If G ∈ I, then ΨIsom([, ]G) ∼= ΨIsom([, ]P ), so set [, ] = [, ]P .

Let V = P/P ′ and W = P ′. The adjoint algebra of ◦ : V ×V �W is a ∗-algebra
with the symplectic involution:[

a b
c d

]
7→

[
d −b
−c a

]
=

[
a b
c d

]
.
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More specifically,

(5) A = Adj(◦) =

{([
M 0

0 M
t

]
,

[
M 0
0 M t

])
: M ∈M2(Zp)

}
.

Observe that

(6) V ∧A V := V ⊗ V/〈(uf)⊗ v − u⊗ (vg) : ∀u, v ∈ V,∀(f, g) ∈ A〉 ∼= W.

If ϕ is such an isomorphism then (1, ϕ) is a pseudo-isometry from ∧A to ◦. There-
fore, ΨIsom(∧A) ∼= ΨIsom(◦). Furthermore, Adj(◦) is a ∗-simple algebra isomorphic
to M2(Zp) with the symplectic involution and, by equation (5), is irreducibly rep-
resented on a two dimensional vector space. By [4, Theorems 1.5 & 4.5]

(7) ΨIsom(◦) ∼= GSp(2, p)⊗Zp
GL(2, p),

where GSp(n, p) = Sp(n, p) o Z×p .
The number of pairwise non-isomorphic groups in the isoclinism class I is bounded

below by |Hom(Z4
p,Z3

p)|/|ΨIsom([, ]P )|. Hence, by equation (7), there are at least

(8)
|Hom(Z4

p,Z3
p)|

|GSp(2, p)⊗Zp GL(2, p)|
= p5 + p4 + 3p3 + 3p2 + 6p+ 6 + o(1)

groups. We state a lemma which follows from the orbit-stabilizer theorem.

Lemma 9. Let I be an isoclinism class of groups which are extensions of elemen-
tary abelian groups A by B, and let ΨIsom(I) be the pseudo-isometry group. If s is
the number of orbits in I such that StabΨIsom(I)(Hom(B,A)) = 1, then

s ≥ |Hom(B,A)|
|ΨIsom(I)|

.

Proposition 10.

lim
p→∞

g(p, 7)

f(p, 7)
≥ 1

3
.

Proof. Let P be defined as in equation (4). By equation (8) and Lemma 9, the
number of homomorphisms in Hom(Z4

p,Z3
p) with a trivial stabilizer is bounded

below by p5 + O(p4). From the short exact sequence in (3), g(p, 7) ≥ p5 + O(p4).
From [11, Theorem 1], if p > 5, then

f(p, 7) = 3p5 +O(p4).

Therefore, for p > 5, g(p, 7)/f(p, 7) ≥ 1/3− εp, where εp → 0 as p→∞. �

3.2. The lower bound for p6. Consider the set of groups with the following
presentations. For 0 ≤ r ≤ s < p, let

P (r, s) = 〈a, b, c | [c, a][b, a, a]−1, [c, b], [b, a, c],

ap[b, a, b]−r, bp[b, a, b]−s, cp[b, a, a]−1[b, a, b]−1, p-class 3〉.

Additionally, for 0 ≤ t ≤ (p− 1)/2, 0 ≤ u < p, and a non-square ω ∈ Zp, let

Q(t, u) = 〈a, b, c | [c, a][b, a, b]−1, [c, b][b, a, a]−ω, [b, a, c],

ap[b, a, a]−t, bp[b, a, a]−u, cp[b, a, b]−1, p-class 3〉.

We show that most of the groups P (r, s) and Q(t, u) have an automorphism group
which is a p-group. However, there are a few cases with p′-automorphisms.
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Lemma 11. The groups P (r, r) and Q(0, u) have a p′-automorphism.

Proof. The map of P (r, r) which sends a to b−1cr, b to a−1cr, and c to c[b, a]−1

induces an automorphism. In addition, the map of Q(0, u) which fixes a and c but
inverts b induces an automorphism. �

To show that nearly all groups P (r, s) and Q(t, u) have an automorphism group a
p-group, we compute the automorphism groups of their Lie rings using the Lazard-
Mal’cev correspondence. For details on this technique, see [10, Section 4]. To
make the computations easier, we determine a characteristic composition series
for the groups. Therefore, we show that the corresponding parabolic subgroup
A(G) ≤ GL(3, p) must be trivial. Because the torus is not split for these groups,
this is not a trivial computation. In the proceeding lemma, we solve nonlinear
equations to compute the automorphism group of the associated Lie rings.

Lemma 12. If G ∈ {P (r, s), Q(t, u) | r 6= s, t 6= 0}, then Aut(G)|G/Φ(G) = 1.

Proof. Note that H = 〈c,G′〉 is characteristic as it is the radical of [, ]G : G/G′ ×
G/G′ � G′/γ3(G). A characteristic composition series of G is given in Figure 1.

G

HΩ(G)

Ω(G) H

G′

γ3(G)

Hp

1

For G = P (r, s):

Hp = 〈[b, a, a][b, a, b]〉,

Ω(G) = 〈ab−r/s, G′〉.

For G = Q(t, u):

Hp = 〈[b, a, b]〉,

Ω(G) = 〈a−u/tb,G′〉.

Figure 1. Some characteristic subgroups of G.

First, consider G = P (r, s), where r 6= s. We use(
b, ab−r/s, c, [b, a]−1[b, a, b]r/s, [b, a, a], [b, a, a][b, a, b]

)
as a consistent generating set, determined by the composition series in Figure 1.
Therefore, the Lie ring of P (r, s) has the following presentation

RP = 〈x1, . . . , x6 | px1 = s(−x5 + x6), px3 = x6,

x2x1 = x4, x3x2 = x5, x4x1 = x5 − x6,

x4x2 = −(r/s+ 1)x5 + (r/s)x6〉,
all omitted power-commutator relations are assumed to be trivial.

Suppose that α, . . . , ζ ∈ Zp and the following induces an automorphism of RP

x1 7→ αx1 + βx2 + γx3, x4 7→ αδx4 − γδx5,

x2 7→ δx2, x5 7→ (δε− δζ(r/s+ 1))x5 + δζr/sx6,

x3 7→ εx3 + ζx4, x6 7→ εx6.

Such an automorphism must satisfy the following equations
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αζ + βε = βζ(r/s+ 1),

βζr/s = αζ,

δε− α = δζ(r/s+ 1),

γ − αs = sε− δζr,

α2δ − αβδr/s = ε− δζr/s,
εr/s− αδ2r/s = δζr/s(r/s+ 1),

αδ2(r/s+ 1) = δε(r/s+ 1)− δζ(r/s+ 1)2,

αβδ(r/s+ 1) = α2δ + δζ(r/s+ 1)− δε.

We have two cases, either ζ = 0 or ζ 6= 0. If ζ = 0, then only the trivial automor-
phism satisfies the above equations. If ζ 6= 0, then

(r/s− 1)(r/s+ 1)2 = 0 r/s = 1.

Therefore, since r 6= s, Aut(G)|G/Φ(G) = 1.
Finally, consider G = Q(t, u), where t 6= 0, and use(

a, a−u/tb, c, [b, a], [b, a, a], [b, a, b]
)

as a consistent generating set. The Lie ring for G has the following presentation

RQ = 〈x1, . . . , x6 | px1 = tx5, px3 = x6,

x2x1 = x4, x3x1 = x6, x3x2 = ωx5 − (u/t)x6,

x4x1 = x5, x4x2 = −(u/t)x5 + x6〉,

again, all trivial power-commutator relations are omitted.
Suppose α, . . . , ζ ∈ Zp and the following induces an automorphism of RQ

x1 7→ αx1 + βx2 + γx3, x4 7→ αδx4 + ωγδx5 − γδ(u/t)x6,

x2 7→ δx2, x5 7→ αtx5 + γx6,

x3 7→ εx3 + ζx4, x6 7→ εx6.

Such an automorphism must satisfy the following equations

ωβε+ αζ = βζ(u/t),

αε+ βζ = ε+ εβ(u/t),

ωδε = ωαt+ δζ(u/t),

δζ + ε(u/t) = ωγ + δε(u/t),

α2δ = αβδ(u/t) + αt,

γ = αβδ,

αu = αδ2(u/t),

ε = αδ2 + γ(u/t).

If β = 0 then only the trivial automorphism satisfies the above equations. If β 6= 0,
then the above equations cannot be satisfied as t 6= 0. Therefore, when t 6= 0, we
must have β = 0, and hence, Aut(G)|G/Φ(G) = 1. �

Proposition 13.

lim
p→∞

g(p, 6)

f(p, 6)
≥ 1

3
.

Proof. There are p2 groups isomorphic to P (r, s) or Q(t, u) for the various param-
eter values [12, p.18, (6.172) & (6.179)]. From Lemma 11, only 2p of those groups
have an involution, and from Lemma 12, the remaining automorphism groups are p-
groups because Aut(G)|G/Φ(G) = 1. Therefore, g(p, 6) ≥ p2 − 2p. By [10, Theorem
1], if p ≥ 5, then

f(p, 6) = 3p2 +O(p),

so g(p, 6)/f(p, 6) ≥ 1/3− εp, where εp → 0 as p→∞. �



MOST SMALL p-GROUPS HAVE AN AUTOMORPHISM OF ORDER 2 7

4. Upper bounds

We prove that the limit of the ratio in Theorem 1 is bounded above by 1/3, so
together with Propositions 10 & 13, this finishes the proof of Theorem 1. The proof
of the following proposition significantly depends on finding large isoclinism classes
in the classifications of groups of order p6 and p7 [10,11]. Throughout the proof we
reference the Lie rings in the database of Eick and Vaughan-Lee [12]; however, we
present the group version of the Lie rings, using the Lazard correspondence.

Proposition 14. For n ∈ {6, 7},

lim
p→∞

g(p, n)

f(p, n)
≤ 1

3
.

Proof. Fix p > 5. First we consider groups of order p6 that are immediate descen-
dants of

P = 〈a, b, c | [c, a] = [c, b] = 1, class 2, exponent p〉.
There are (p − 1)(p − 3) immediate descendants of P , of order p6, that satisfy
equivalent relations to the following [12, p. 17, (6.163) & (6.164)]

(15)
[c, a] = [b, a, a],

[c, b] = [b, a, c] = cp = 1.

Moreover, there are p2 + (p + 1)/2 − gcd(p − 1, 4)/2 immediate descendants of P ,
of order p6, that satisfy equivalent relations to the following [12, p. 18, (6.178)].

(16)

[c, a] = [b, a, b],

[c, b] = [b, a, a]ω,

cp = 1.

We assume that ω is a non-square modulo p. Although the above groups satisfy
more relations, the map that inverts a and b and fixes c induces an automorphism
of each of these groups.

Now, we consider groups of order p7 that are immediate descendants of

Q = 〈a, b, c | [c, b] = 1, class 2, exponent p〉.
There are p5 +p4 +p3 +O(p2) immediate descendants of Q, of order p7, that satisfy
equivalent relations to the following [12, pp. 89–90, (7.773) & (7.774)]

(17)

1 = [c, b] = [b, a, c],

[b, a, a] = [c, a, c],

[c, a, a] = [b, a, b]ω.

When p = 2 mod 3, we set ω = 1; otherwise, ω is either a non-square or ω = 1. In
addition, there are p5 + p4 + p3 +O(p2) immediate descendants of Q, in total, that
satisfy equivalent relations to one of the following [12, p. 92, (7.779) & (7.780)].

(18)

1 = [c, b] = [b, a, a],

[c, a, a] = [b, a, b]x[b, a, c],

[c, a, c] = [b, a, b]ω,

If p = 1 mod 3, set x = 0; otherwise, the values of x are found in [12, p. 92]. Again,
these groups satisfy more relations, but the map that inverts the generators a, b,
and c induces an automorphism of these groups.
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From [10, Theorem 1] and [11, Theorem 1], if p > 5, then

f(p, 6) = 3p2 +O(p),

f(p, 7) = 3p5 +O(p4).

We have shown that g(p, 6) ≤ f(p, 6)−2p2−O(p) and g(p, 7) ≤ f(p, 7)−2p5−O(p4).
Therefore, if n ∈ {6, 7}, then g(p, n)/f(p, n) ≤ 1/3+εp, where εp → 0 as p→∞. �
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