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Abstract. Motivated by the desire for better isomorphism tests for finite

groups, we present a polynomial-time algorithm for deciding isomorphism
within a class of p-groups that is well-suited to studying local properties of

general groups. We also report on the performance of an implementation of

the algorithm in the computer algebra system magma.
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1. Introduction

The best known general algorithms to test whether a pair of finite groups of
order n are isomorphic use nO(µ(n)) operations, where µ(n) = max{ei : n =
pe11 · · · pess , pi prime }. These algorithms are far too slow for most practical purposes,
and their complexity (super-polynomial in the order of the groups) falls short of
natural theoretical benchmarks. Significant theoretical or practical progress seems
beyond the reach of current methods.

A new strategy developed by the first and third authors in collaboration with
E.A. O’Brien breaks up the work into multiple overlapping instances of isomor-
phism of p-groups with small commutator subgroups. This raises the question of
how non-abelian a p-group can be and still have a highly efficient isomorphism
test. The results of this paper show that, for finite p-groups whose commutator
subgroup is central and isomorphic to Zp × Zp, there is an O(p3 + (log n)2ω) time
test for isomorphism, where 2 6 ω < 3 is the exponent of efficient matrix multipli-
cation [vzGG, Chapter 12]. Note, it takes at least O((log n)3) bits of information
to even describe a p-group of order n.

To state our main theorem, we recall a notion from Lie theory. In [K], Knebelman
defines the genus of a Lie K-algebra to be dimK L − d(L), where d(L) is the size
of the smallest generating set for L. Every finite p-group, G, has an associated Lie
Zp-algebra, L(G), and there is a unique largest extension K : Zp such that L(G)
is a Lie K-algebra. So we define the genus of G to be the genus of L(G) as a
K-algebra.

We assume that groups are input succinctly, for example using permutations,
matrices, or polycyclic presentations; see Section 2.3 for a more detailed discussion.
Treating the cost of operations in such groups as constant, we prove the following.

Theorem 1.1. There are algorithms that, given groups G1 and G2 of order pm

with derived subgroups of order ps,

(a) decide if the Gi are p-groups of class 2, exponent p, and genus 2, and if so
(b) return the coset of isomorphisms G1 → G2 (or the empty set if none exist).

The algorithm for part (a) runs in time O(m2ω log2 p). For part (b) we let t bound
the number of pairwise non-isomorphic central product factors of G1 or G2 and
prove the algorithm runs in time O((m2ω−2 + min{sp3s/2, t!})m2 log2 p).

1.1. Implementation. We have implemented the algorithms of Theorem 1.1 in
the computer algebra system magma [BCP]. The implementation is available upon
request from the authors. A detailed analysis of its performance is given in Sec-
tion 8, but we summarize here the results of one experiment to illustrate its ef-
ficiency. We constructed 1557 random 5-groups of genus 2 having orders ranging
from 55 to 5256, and generated for each a random isomorphic copy. We then tasked
our implementation to find an explicit isomorphism between each pair of groups,
plotting the completion time on a graph. Figure 1.1 shows the performance. We
intended to compare the performance of our implementation with that of existing
functions in magma, but even for groups of order 57 the existing routines exhausted
the 500GB of memory on our largest machine. Instead Figure 8.1 shows how our
algorithm compares with the cost of solving random systems of linear equations in
approximately d2 variables and equations, where d = log5 |G|.
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Figure 1.1. Performance data for tests to confirm isomorphism
between groups of order 5d+2 for increasing d. Sloped and flat
designate further properties of the input discussed in Theorem 1.2.
See Figure 8.1 for a comparison of how closely our algorithm tracks
with the speed of magma’s methods for solving systems of linear
equations of comparable size.

1.2. Classification problems. Groups of genus 2 were first studied in the context
of the finite-tame-wild trichotomy theorems. In particular, they have been shown to
lie on the tame-wild boundary. General p-groups of genus 2 are wild (their classifi-
cation would imply a classification of all finite-dimensional algebras) [BLS,BDL+].
Those of exponent p are, however, tame [V1] which means they decompose, via cen-
tral products, into one-parameter families. A classification of these one-parameter
families for arbitrary fields was not previously known; to prove Theorem 1.1 we
required such a classification.

Theorem 1.2. A centrally indecomposable p-group of exponent p, and of genus 2
over a field k, is isomorphic to one of the following two types of groups:

(i) a quotient by a central subgroup N of a Heisenberg group,

H =


1 e z

0 1 f
0 0 1

 :
e, f, z ∈ k[x]/(a(x)c),
a(x) irreducible

 ,

where as matrices 1−N is a k-subspace of codimension 2 in 1− [H,H]; or
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(ii) the matrix group

H[ =




I2

e1 · · · em 0
0 e1 · · · em

z1

z2

Im+1

f0

...
fm
1


: ei, fj , z` ∈ k


.

1.3. Overview. The reader familiar with p-groups may already have noticed the
connection, which will be further elucidated in Sections 2 and 3, between groups
of genus 2 and pairs {Φ1,Φ2} of alternating forms over a finite field Fq. Indeed,
we use the classification of such pairs by Bond [B3] and Scharlau [S1] (who use an
earlier classification of pairs of matrices – or Kronecker modules as they are known
– by Kronecker and Dieudonné [D]). We also exploit a recently discovered Galois
connection between adjoints of bilinear maps and tensor products [W2, BW2] to
prove Theorem 1.2.

By itself, Theorem 1.2 is not sufficiently powerful to decide isomorphism among
genus 2 groups (not even if we restrict to centrally indecomposable groups). There
exist non-isomorphic groups of genus 2 whose centrally indecomposable factors are
isomorphic (see Example 3.16). Hence, theorems of Krull-Remak-Schmidt type,
upon which the classification of Kronecker modules depends, simply do not exist
for groups of genus 2. Nevertheless, we prove a transitivity result on fully-refined
central decompositions of groups of genus 2 (Theorem 3.15). This makes for a well-
defined generalization of the Pfaffian to pairs of alternating forms. The resulting
characterization of isomorphism classes, presented in Theorem 3.22 in terms of
bilinear maps, leads to an isomorphism test that is effective when Fq is small.

When Fq is large, we use a general technique for isomorphism testing in groups of
p-class 2. Dubbed the adjoint-tensor method, this technique was proposed in [BW2]
by the first and third authors as a means of bridging the gap between the generic
but typically slow general algorithms, and incredibly fast but highly specialized
isomorphism tests such as the one in [LW]. The adjoint-tensor method is presented
in a mildly restricted form in Section 4. It requires the user to solve several problems
– such as algebra conjugacy, algebra normalizer, and subspace transporter – that are
known in their general forms to be hard. The main work is to show that in our
particular setting each of these three problems has an efficient solution. The details
of the test, which include effective methods for computing with certain quotients
of the notorious Nottingham group, are presented in Sections 5 through 7.

We discuss our magma implementation in Section 8, and give further details on
its performance. Section 9 contains some concluding remarks, including observa-
tions about the number of groups of genus 2.

2. Nilpotent Groups and Bimaps

We describe the relationship between groups of nilpotence class 2 and bilinear
maps. This has a long history going back to work of Brahana and Baer in the
1930’s. Henceforth, all groups are finite.
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2.1. Bimaps. Let k be a commutative ring, and U, V,W (left) k-modules. A k-
bilinear map, which we abbreviate to k-bimap, is a function ◦ : U × V � W such
that, for all u, u′ ∈ U , v, v′ ∈ V , and α ∈ k,

(u+ αu′) ◦ v = u ◦ v + α(u′ ◦ v),

u ◦ (v + αv′) = u ◦ v + α(u ◦ v′).

The radicals of ◦ are U⊥ = {v ∈ V : U ◦ v = 0}, V > = {u ∈ U : u ◦ V = 0}, and
W+ = W/(U ◦ V ). We say ◦ is fully-nondegenerate if all three radicals are trivial.
If U = V and v ◦ v = 0 for all v, then ◦ is alternating. We reserve the use of U ,
V and W for these three variables of a bimap and write U◦, U•, and so forth if we
need to distinguish between these components for separate bimaps ◦, •.

A homotopism between bimaps • : U• × V• � W• and ◦ : U◦ × V◦ � W◦ is a
triple f = (fU , fV ; fW ) ∈ Hom(U•, U◦)×Hom(V•, V◦)×Hom(W•,W◦) such that

(∀u ∈ U•,∀v ∈ V•) uf ◦ vf = (u • v)f.

When working with such a triple of maps, writing uf for u ∈ U means ufU , whereas
vf for v ∈ V means vfV , and so on. Bimaps with homotopisms form a natural
category [W2]. A homotopism in which all maps are invertible is an isotopism. We
typically work here with alternating bimaps, and for such bimaps we shall further
insist that fU = fV and refer to an isotopism between • and ◦ as a pseudo-isometry.

When we need to describe a bimap in an example – or for computation – we do
so via matrices. Fix generating sets X,Y, Z for U, V,W , respectively, as k-modules.
For x ∈ X, y ∈ Y , there exist αxyz ∈ k (z ∈ Z) such that

x ◦ y =
∑
z∈Z

αxyzz.

The scalars αxyz are called structure constants of ◦ relative to X,Y, Z. When k
is a field, these constants are uniquely determined by the choices of X,Y, Z and
we record the data using matrices Φz = [[αxyz]], where z ∈ Z and each Φz is an
|X|× |Y | matrix. When ◦ is alternating, each Φz represents an alternating form on
U = V , and {Φz : z ∈ Z} is commonly known as a system of forms [BF,BO].

2.2. Isoclinism and isomorphism of groups. One can associate to each nilpo-
tent group G of class 2 an alternating bimap ◦G. Equivalence of such bimaps up to
pseudo-isometry corresponds to an equivalence of groups that is in general weaker
than isomorphism. This equivalence was introduced by Philip Hall [H] and is known
as isoclinism. The relationship between isoclinism and isomorphism for groups is
akin to that between homotopy equivalence and homeomorphism for topological
spaces.

Commutation in a group is a function [, ] : G × G → G whose image is not,
in general, a subgroup of G. However, the subgroup generated by this image is
the commutator subgroup and is denoted [G,G] or G′. Commutation is also not
a homomorphism and hence has no kernel. However, the center of G, namely
Z(G) = {g ∈ G : [G, g] = [g,G] = 1} consists of those elements that do not influence
the outcome of commutation. Thus, given M such that G′ 6 M 6 Z(G) we can
reduce [, ] to a commutation word map

•G,M : G/M ×G/M → G′

(x̄, ȳ) 7→ [x, y],
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where x̄ denotes the coset xM . If M = Z(G) we write ◦G. Comparing groups G and
H only up to their commutation structures is therefore comparing the maps ◦G and

◦H . Doing so requires homomorphisms f : G/Z(G) → H/Z(H) and f̂ : G′ → H ′

such that

(∀x, y ∈ G) x̄f ◦H ȳf = (x̄ ◦G ȳ)f̂ .

The pair (f, f̂) is a homoclinism and, if the pair is invertible, it is an isoclinism.
In [B1], Baer established a fundamental correspondence for class 2 nilpotent

groups that may already be evident from the foregoing discussion.

Theorem 2.1 (Baer correspondence). If [G,G] 6 Z(G) then ◦G is a fully-nonde-
generate alternating Z-bimap. Also, two groups G and H of nilpotence class 2 are
isoclinic if, and only if, ◦G and ◦H are pseudo-isometric.

The next crucial observation follows from the Universal Coefficients Theorem
applied to group cohomology. (Direct proofs are also known; see, for example,
[W1, Proposition 3.10].)

Proposition 2.2. Two p-groups of nilpotence class 2 and exponent p and the same
order are isoclinic if, and only if, they are isomorphic.

Theorem 2.1 and Proposition 2.2 lead us to study the pseudo-isometry group of
an alternating bimap ◦ : V × V �W , namely

ΨIsom(◦) = {(ϕ, ϕ̂) ∈ Aut(V )×Aut(W ) : ∀u, v ∈ V, uϕ ◦ vϕ = (u ◦ v)ϕ̂}.
If ◦ is k-bilinear over a field k, we can further separate semilinear and linear pseudo-
isometries ΨIsomk(◦) = ΨIsom(◦) ∩GLk(V )×GLk(W ) with exact sequence

1 // ΨIsomk(◦) // ΨIsom(◦) // Gal(k).

The following observation allows us to focus on k-linear isometries.

Lemma 2.3. Let ◦, • : V × V � W be fully-nondegenerate and k-bilinear, and
(ϕ, ϕ̂) a k-semilinear pseudo-isometry of ◦. If σ, σ̂ ∈ Gal(k) are such that

(∀s ∈ k, ∀u ∈ V,∀w ∈W ) (su)ϕ = sσ(uϕ) and (sw)ϕ̂ = sσ̂(wϕ̂),

then σ = σ̂.

Proof. We can test this on the generators u◦v of W . As ϕ̂ is an isomorphism of W ,
{(u ◦ v)ϕ̂ : u, v ∈ V } generates W . So sσ̂((u ◦ v)ϕ̂) = (su)ϕ ◦ vϕ = sσ((u ◦ v)ϕ̂). �

For a group G, we denote by Aut(G) its group of automorphisms, and by
CAut(G)(G/M), for any M C G, the subgroup of automorphisms that induce the
identity on G/M . Questions of isomorphisms and automorphisms of groups reduce
to ones about bimaps as follows (cf. [W1, Proposition 3.8]).

Proposition 2.4. Let G be a p-group of class 2, V = G/G′ and W = G′, so that
•G : V × V �W . Then the following are exact sequences

1 // CAut(G)(V )
ι // Aut(G)

π // ΨIsom(•G),

and, with R = Z(G)/G′,

1→ HomZp
(V,R)→ ΨIsom(•G)→ ΨIsom(◦G)×Aut(R)→ 1.

If G has exponent p then π is surjective and split, and CAut(G)(V ) ∼= Hom(V,W ).
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Finally, for a fixed alternating bimap ◦ : V × V �W , the isometry group is

Isom(◦) = {ϕ ∈ Aut(V ) : ∀u, v ∈ V, uϕ ◦ vϕ = u ◦ v}.

This is the kernel of the restriction of ΨIsom(◦) to W . Note that if ◦ is nondegen-
erate then Isomk(◦) = Isom(◦) because (su)ϕ ◦ vϕ = s(u ◦ v) = (s(uϕ)) ◦ vϕ.

2.3. Computational models for groups. Efficient algorithms exist to determine
crucial information about groups. Details and proofs can be found in [S3, HEO].
The meaning of efficiency depends on how groups are specified for computation.

The pioneering work of Sims, Cannon, and Neubüser in the 1960s and 1970s led
to the standard models of computation that we use today. It is most common to
specify general finite groups by small sets of generators (matrices over finite fields
or permutations of a finite set). Special classes of groups admit certain types of
structured presentations as feasible computational models. For example, polycyclic
presentations are often used for computations with solvable groups. Algorithms for
p-groups should certainly apply to these specialized models but we caution that the
complexity of multiplication can be exponential [LGS1,LGS2].

The notion of a “black-box” group was introduced by Babai and Szemerédi [BS]
in order to strip away information specific to the particular representation, and
thereby force algorithms to deal only with the algebraic structure of the group. All
of our algorithms apply to groups G where algorithms exist to solve the following
tasks:

(i) find |G|;
(ii) given x ∈ G and a sequence x1, . . . , xc ∈ G, either write x as a word over

x1, . . . , xc ∈ G, or else prove x 6∈ 〈x1, . . . , xc〉;
(iii) find generators for Z(G) and for G′;
(iv) decide if G is nilpotent of class 2; and
(v) if G is nilpotent of class 2, construct a system of forms for ◦G.

While it is standard to represent groups as permutations of a set, we note that
often p-groups cannot be represented faithfully as permutations on small sets. As
an illustration, P. Neumann [N] showed that extraspecial groups 2+2m+1

s have no
faithful permutation representation on fewer than 2m points. However, Neumann’s
groups are quotients of Dm

8 , and so they can be represented as quotients of permuta-
tion groups on 4m points. (This phenomenon occurs also for p-groups of odd prime
power – see, for example, Proposition 9.2.) To address this issue, one can choose
to work instead with the permutation group quotient model proposed by Kantor
and Luks [KL]. We note that all of the necessary foundational computations can
be carried out effectively in this model:

Proposition 2.5. Given a group G as a quotient of a permutation group, in poly-
nomial time one can solve all of the problems listed in (i) through (v) above.

Proof. For (i)–(iv) see [S3, Chapter 6] and [KL]. For (v), fix bases {x1, . . . , xd} and
{w1, . . . , we} for the abelian groups G/Z(G) and G′, respectively. The structure
constants for the associated system of forms are obtained by writing each [xi, xj ]
as a vector relative to {w1, . . . , we}. �

We shall state and prove various results for bimaps that require us to work with
large fields. We therefore allow ourselves to factor polynomials using randomized
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Las Vegas polynomial-time factorization algorithms. (A Las Vegas algorithm al-
ways returns a correct result but with small, user prescribed, probability reports
failure.) Such methods can always be “derandomized” whenever the characteristic
p is bounded by the input size – as is the case with permutation group quotients.
We refer the reader to [vzGG] for further information on these matters.

Complexity of group isomorphism. Group isomorphism is often reported as having
complexity nlogn+O(1), where n is the order of the input groups, in part because
it was reported this way in an influential paper by Miller [M1]. A more accurate
description of the simple bound is that it takes time nd+O(1), where d is the common
size of a smallest generating set for the input groups. Guralnick and Lucchini have
independently shown that d is bounded by µ(n) + 1 [BNV, p.146]. Rosenbaum
and Wagner [RW] show that the leading constant in the exponent can be decreased
below 1 in many circumstances. There are also numerous unanalyzed improvements
in the literature [ELGO,O] that likely influence the cost. The estimate of nO(µ(n))

for some leading constant less than 1 is a reasonable over estimate of the best bound
by today’s methods.

3. Groups of Genus 2

In this section we propose an integral metric for the “complexity” of a nilpotent
group. Inspired by an analogous metric introduced by Knebelman [K] to measure
the complexity of Lie algebras, we call this number the genus of a group.

3.1. The centroid and genus of a group. In Section 1 we defined the genus of a
p-group in terms of its associated Lie algebra using Knebelman’s original definition.
Here, we give an equivalent formulation using bimaps that is better suited to our
computational goals. Let k be a commutative ring, and ◦ : U ×V �W a k-bimap.
The centroid of ◦ is the largest ring, C, over which ◦ is C-bilinear, namely

C(◦) = {σ ∈ End(U)× End(V )× End(W ) : ∀u,∀v, (uσ) ◦ v = (u ◦ v)σ = u ◦ (vσ)}.

This explicit definition of the ring makes it clear that C(◦) may be obtained as
the solution of a system of linear equations. It is understood that σ ∈ C(◦) acts
naturally on U , V , and W but we can write σ = (σU , σV ;σW ) if we wish to clarify
the action on the individual k-modules. If ◦ is fully-nondegenerate – as is the case
with the commutation bimap of a group – then C(◦) is commutative. The following
connection between centroids and direct products was proved in [W4, Section 6].

Theorem 3.1. A finite nilpotent group G of class 2 is isoclinic to a direct product
of proper nontrivial subgroups if, and only if, the centroid C(◦G) is a direct product
of proper subrings.

Being concerned with questions of isomorphism, we focus on directly indecom-
posable groups. If G is such a group, by Theorem 3.1, C = C(◦G) is a local ring.
Thus, if J = J(C) is the Jacobson radical of C, W/WJ is a vector space over the
residue field C/J , and we define the rank of W to be the dimension of this space.

Definition 3.2. Let G be a nilpotent group of class 2. Then G is isoclinic to a
direct product H1× · · ·×Hs of directly indecomposable groups. The genus of G is
maximum rank of [Hi, Hi] as a C(◦Hi

)-module.
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The concept of genus arose first in Knebelman’s attempts to classify Lie algebras
and general nonassociative algebras [K]. He observed that when the dimension of
a Lie k-algebra L was close to the minimum number, d(L), of generators, there
are relatively few variable relations. Accordingly, he proposed that algebras of low
genus – which he defined as dimL−d(L) – should be easier to classify. For instance,
if L is abelian then dimL − d(L) = 0, and if L is a Heisenberg Lie algebra then
dimL− d(L) = 1. Later, Bond tackled the classification of Lie algebras of genus 2,
and reduced the problem to the class 2 nilpotent Lie algebras of genus 2 [B3]. The
latter problem remains very difficult. In fact the classification of 6-dimensional Lie
algebras has only recently been completed [M2, CdGS], and the nilpotent genus 2
cases are the most involved.

3.2. Some groups of low genus. To reveal some important subtleties in the
definition of genus, and to provide concrete examples of the groups we propose to
study, we introduce some groups of genus 1 and genus 2.

(a) Every group with cyclic central commutator subgroup has genus 1. For such G
with ◦G : G/Z(G)×G/Z(G)� Zm we have C(◦G) = Zm = Zpe11 ⊕ · · · ⊕ Zpess ,

with each pi a distinct prime. As G is a direct product of its Sylow subgroups,
we need only the maximum genus when restricted to each pi. As each Zpeii is

cyclic, the genus of each Sylow subgroup is 1.
(b) Any group with central commutator subgroup isomorphic to Zm×Zn has genus

at most 2. Let G be such a group. If (m,n) = 1, then Zm × Zn is cyclic and
G has genus 1. Else, G is a product of Sylow subgroups. Let P be a Sylow
p-subgroup of G of largest genus. We may assume P ′ ∼= Zpe × Zpf , e > f > 1.
Either C(◦P ) ∼= Zpe (in which case P is genus 2), or C(◦P ) is not local and P
is isoclinic to a nontrivial direct product (so P is genus 1).

(c) Fix any commutative Artinian ring K, and consider the Heisenberg groups

Hm(K) =


1 u s

0 Im vtr

0 0 1

 : u, v ∈ Km, s ∈ K

 .

If K = K1 ⊕ · · · ⊕Ks is a decomposition of K into local rings, then

Hm(K) ∼= Hm(K1)× · · · ×Hm(Ks),

so the genus is the maximum genus of any Hm(Ki). The bimap of Hm(Ki) is
simply the alternating nondegenerate form K2m

i × K2m
i � Ki having Ki as

centroid. Since Ki is commutative and local, Ki/J(Ki) is a field, so Hm(Ki)
has genus 1. Hence, all Heisenberg groups have genus 1.

While all of these examples are somewhat elementary, from a classification per-
spective we have already entered turbulent waters. For instance, classifying the
groups with cyclic central commutator subgroup in part (a) has taken the combined
work of several authors including Leong [L1], Finogenov [F], and Blackburn [B2].
The Heisenberg groups in (c) were only recently characterized in abstract terms
(with no a priori knowledge of m or K) for the case when K is a field [LW, Theorem
3.1]. (Our results extend that characterization to K an arbitrary cyclic algebra.)

It may surprise the reader that groups seeming to have genus g > 1 are in
fact genus 1. For example, if [K : Zp] = g, then H1(K) is a group whose central
commutator subgroup is isomorphic to Zgp, so it would seem that one can easily build
a group of high genus. However, the centroid recovers field structure and, viewed
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as a vector space over the centroid, the commutator subgroup is 1-dimensional. A
direct product H1(Zp)g also has commutator subgroup Zgp. Via Theorem 3.1 and
Definition 3.2, however, those examples are again genus 1. Note, moreover, that
our definition of centroid is invariant under extensions: if G is a group of genus
g over a field k and H is a group such that ◦H is the tensor of ◦G with a field
extension K of k, then H has genus g over K.

3.3. Central decompositions, hyperbolic pairs, and adjoints. The groups
of genus 2 admit two important decompositions. The first decomposes the group
as a central product of subgroups, and the second as a product of two abelian
normal subgroups whose intersection is central. We shall make essential use of
both types of decomposition in our algorithms, so we now introduce them and give
characterizations that facilitate effective computation.

Definition 3.3. A central decomposition of a group G is a set, H, of subgroups
generating G such that for H ∈ H, G 6= 〈H − {H}〉 and [H, 〈H − {H}〉] = 1. We
say that G is centrally indecomposable if {G} is its only central decomposition.

A detailed treatment of central decompositions of p-groups is the subject of [W1],
and we shall use some of the results therein. The second decomposition we need
mimics hyperbolic pairs in the sense of symplectic geometry. It was introduced in
[LW, Section 6] to work with 2-groups, but we use it here for arbitrary p-groups.

Definition 3.4. A hyperbolic pair for a group G is a pair M,N of normal abelian
subgroups of G such that G = MN and M ∩N 6 Z(G).

Both central and hyperbolic decompositions may be obtained from a ring that
is easily computed from ◦G, namely the ring of adjoints. In a similar vein to our
definition of centroid, we introduce the adjoint ring, A(◦), of a bimap ◦ : U×V �W
as the largest ring, A, over which ◦ factors through U ⊗A V , namely

A(◦) = {µ ∈ End(U)× End(V )op : ∀u∀v, uµ ◦ v = u ◦ µv}.

Again, A(◦) may be obtained as the solution of a system of linear equations [W5,
BW4,BW3]. As End(V )op suggests, we find it convenient to work with the opposite
ring in the second component – thus A acts on U on the right but on V on the left.
If we need to clarify the action we write uµ = uLµ and µv = vRµ.

If ◦ : V × V �W is a nondegenerate, alternating bimap, then A(◦) is faithfully
represented in End(V ) and in End(V )op. This endows A(◦) with a natural anti-
isomorphism interchanging Lµ and Rµ, giving it the structure of a ∗-ring. The
connections to central decompositions and hyperbolic pairs come from the existence
of certain types of idempotents in this ∗-ring. We say that an idempotent, e, in
A(◦) is self-adjoint if e∗ = e, and hyperbolic if e∗ = 1− e. Recall that idempotents
e, f in a ring are orthogonal if ef = 0 = fe.

Lemma 3.5. A finite nilpotent group, G, of nilpotence class 2 has

(i) a central decomposition {H1, . . . ,Hs} if, and only if, A(◦G) has a set {e1, . . . , es}
of pairwise orthogonal, self-adjoint idempotents that sum to 1, and

(ii) a hyperbolic pair if, and only if, A(◦G) has hyperbolic idempotents.

Proof. A proof of (i) may be found in [W1, Theorem 4.10].
For (ii), let Z = Z(G), and ◦ = ◦G : G/Z × G/Z � G′. Suppose M,N is a

hyperbolic pair for G, and put E = MZ/Z and F = NZ/Z. Since G = MN and
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M∩N 6 Z(G) we have V = G/Z = E⊕F . Let e denote the projection idempotent
onto E with kernel F . Hence, 1−e is the projection idempotent onto F with kernel
E. As M and N are abelian, note E ◦ E = 0 = F ◦ F , so for all u, v ∈ V ,

ue ◦ v = ue ◦ ev + ue ◦ (1− e)v
= u ◦ (1− e)v − u(1− e) ◦ (1− e)v = u ◦ (1− e)v.

In particular, e ∈ A(◦), and e∗ = 1− e.
Conversely, observe that if e ∈ A(◦) and e∗ = 1 − e, then V = V e ⊕ V (1 − e)

and V e ◦ eV = V e(1 − e) ◦ V = 0. Hence, M = {g ∈ G : (gZ)e = gZ} and
N = {g ∈ G : gZ(1− e) = gZ} is a hyperbolic pair for G. �

We say that a central decomposition is fully-refined if each term in the decom-
position is centrally indecomposable. Lemma 3.5 is the tool we need to compute
such decompositions, and also hyperbolic pairs.

Theorem 3.6. There are polynomial-time algorithms for each of the following:

(a) construct a fully-refined central decomposition of a given finite p-group; and
(b) decide if a given p-group has a hyperbolic pair and construct one if it does.

Proof. A proof of (a) may be found in [W5, Theorem 1.1].
The proof for (b) is similar so we just give a sketch. Let G be the given p-group,

and ◦ = ◦G : G/Z(G)×G/Z(G)� G′. Recall that we can compute generators for
A(◦) as the solution of a system of equations. Hence, by Lemma 3.5, it suffices to
find an idempotent e ∈ A(◦) such that e∗ = 1− e.

Using [W1,BW4,BW3] we begin by constructing the Jacobson radical, J , of A,
and then decomposing A/J as a sum S1 ⊕ . . . ⊕ Sm of ∗-simple (both simple and
∗-invariant) ideals. Each Si is isomorphic to the adjoint ring of a nondegenerate
alternating, symmetric, or Hermitian form (where in the Hermitian case we permit
a degenerate field extension K ⊕K – also called exchange); see [W5, Section 5].

In a ∗-simple ring, an idempotent e with e∗ = 1−e coincides with a decomposition
of the associated form into a pair of totally isotropic subspaces, which are readily
computed using a Gram-Schmidt type algorithm [W3]. Thus, within each Si find an
idempotent êi with ê∗i = 1−êi. Let ê =

∑
i êi and use the idempotent lifting formula

in [W1, Section 5.4] to lift ê ∈ A/J to an idempotent e ∈ A with e∗ = 1− e. �

We remark that one can lift idempotents more efficiently when p is odd by
computing a ∗-invariant semisimple complement to the radical, thereby reducing
the problem to the semisimple ∗-rings [BW4].

3.4. The centrally indecomposable groups of genus 2. We focus now on the
centrally indecomposable groups of genus 2. Our immediate goal is to classify the
adjoint rings of the commutation bimaps of such groups. The ultimate goal is to
prove Theorem 1.2, but this must wait until Section 3.6.

We begin with a classification by Kronecker and Dieudonné [D] of pairs of ma-
trices, which later led to classifications of pairs of forms by Scharlau [S1]. Indepen-
dently – and prior to Scharlau – Bond [B3, p. 608] applied the same treatment to
attempt to classify nilpotent Lie algebras of genus 2.

The following fundamental result is folklore (see, for example, [GG, Section 1]).
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Lemma 3.7. If {Φ1,Φ2} is a pair of alternating forms on a finite-dimensional
vector space V , then there is a decomposition V = E ⊕ F such that E and F are
totally isotropic with respect to both forms.

Let {Ψ1,Ψ2} be a pair of c×d matrices with entries in a field k. As transforma-
tions from kc to kd we say that {Ψ1,Ψ2} is decomposable if we can find bases for kc

and kd with respect to which Ψ1 =
[

Ψ11 0
0 Ψ12

]
and Ψ2 =

[
Ψ21 0

0 Ψ22

]
, and Ψ1j has the

same size as Ψ2j for j = 1, 2. If no such bases exist then the pair is indecomposable.
Indecomposable pairs are classified in the following classical result.

Theorem 3.8 (Kronecker-Dieudonné [D]). If {Ψ1,Ψ2} is an indecomposable pair
of matrices with entries in a field k, then one of the following holds:

(i) Ψ1,Ψ2 ∈ Md(k) and there are bases such that Ψ1 = Id and Ψ2 = C(a(x)),
where a(x) is a power of an irreducible polynomial and C(a(x)) its companion
matrix; or

(ii) Ψ1,Ψ2 ∈Md,d+1(k) and there are bases such that Ψ1 = [Id|0] and Ψ2 = [0|Id].

An algorithm for Theorem 3.8 is given in Section 5.1. The result asserts a canoni-
cal description of indecomposable pairs up to the action {Ψ1,Ψ2} 7→ {XΨ1Y,XΨ2Y }.
Note, constraining the problem so that X = Y −1 (so the matrices are square) makes
the classification problem wild. For, xi 7→ Ψi defines a k〈x1, x2〉-module on kd, and
conjugation of the pair {Ψ1,Ψ2} by X is a module isomorphism; this is the defini-
tion of wild representations. Similarly, increasing from pairs of matrices to triples
gives rise to another wild problem [BLS,BDL+].

We use Theorem 3.8 now to classify pairs of forms associated to centrally inde-
composable p-groups of genus 2.

Proposition 3.9. If G is a centrally indecomposable p-group of genus 2 over a
field k, then ◦G : kd × kd� k2 is isometric to a bimap represented by a pair

Φ1 =

[
0 Ψ1

−Ψtr
1 0

]
and Φ2 =

[
0 Ψ2

−Ψtr
2 0

]
,(3.10)

of alternating forms, where the pair {Ψ1,Ψ2} is given by Theorem 3.8 part (i) or
(ii) according to whether d is even or odd, respectively.

Proof. Regard V = G/Z(G) and W = G′ as k-spaces, so that dimkW = 2, and
consider the k-bimap ◦ = ◦G : V × V � W . As in Section 2.1, ◦ is represented by
a pair {Φ1,Φ2} of alternating forms over k. As G is centrally indecomposable, by
Lemma 3.5(i) {Φ1,Φ2} is orthogonally indecomposable. Further, by Lemma 3.7,
there is a decomposition V = E⊕F with E◦E = 0 = F ◦F . Thus, the restriction of
◦ to E ×F yields an indecomposable pair of matrices (the “corner blocks”). Using
appropriate basis changes in E and F ,

Φ1 =

[
0 Ψ1

−Ψtr
1 0

]
and Φ2 =

[
0 Ψ2

−Ψtr
2 0

]
,

where the pair {Ψ1,Ψ2} is given by Theorem 3.8 part (i) or (ii) depending on
whether dimk V is even or odd, respectively. �

The dichotomy in Proposition 3.9 – and its eventual incarnation in Theorem 1.2
– is fundamental to our algorithm, and we introduce some helpful terminology
from [BW3] for easy reference.
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Definition 3.11. A centrally indecomposable group, G, of genus 2 is said to be
sloped if it is type (i), and flat if it is type (ii). We extend the appropriate notion of
sloped and flat to the associated k-bimap, ◦G. (Note, if the k-dimension of G/Z(G)
is even then G is sloped, and otherwise it is flat.)

We stress that Proposition 3.9 is not a classification of centrally indecomposable
groups of genus 2, even if their exponent is p. That would first require a classification
of irreducible polynomials. Secondly – and much more troubling for our algorithms
– pairs of forms are not unique to a group of genus 2.

Example 3.12. Let k = Z3, and put a(x) = x2 + 1 and b(x) = x2 + x + 2. The
Heisenberg groups H(k[x]/(a(x)2)) and H(k[x]/(b(x)2)) are isomorphic (they are
both over F9) and centrally indecomposable of genus 2, but there are sets of gener-
ators for these groups where the associated pairs of forms are non-isometric. E.g.:{[

0 I4
−I4 0

]
,

[
0 C(a(x)2)

−C(a(x)2)tr 0

]}
,{[

0 I4
−I4 0

]
,

[
0 C(b(x)2)

−C(b(x)2)tr 0

]}
,

and C(a(x)2) and C(b(x)2) are not conjugate.

Another way in which choice of generators removes a canonical relationship to
Kronecker type arguments is seen by constructing groups of genus 2 as quotients of
Heisenberg groups.

Example 3.13. Let k = Z3, and put a1(x) = x4 +x3 +x2 + 1, a2(x) = x4 + 2x2 + 2,
and a3(x) = x4 +x3 +2x+1. Set Hi = H(k[x]/(ai(x))). As each ai(x) is irreducible
H1
∼= H2

∼= H3. Now, with respect to the natural basis {1, x, x2, x3}, define

Mi =


1 0 a+ bx

0 1 0
0 0 1

 : a, b ∈ k

 6 Hi.

Evidently, Gi = Hi/Mi has genus 2 over k and is centrally indecomposable. The
assignment x2 7→ 2x2+x3 and x3 7→ x2 induces an isomorphismG2 → G3. However,
it can be shown (say, by applying the algorithm of Theorem 1.1) that G1 6∼= G2.

We will soon need the following consequence of Proposition 3.9.

Corollary 3.14. Let G be a centrally indecomposable p-group of genus 2 over a
field k, A = A(◦G) its ring of adjoints, and J = J(A) the Jacobson radical of A.

(i) G is sloped if, and only if, A/J ∼= M2(K), where K/k a field extension and
the induced involution on A/J is

[
a b
c d

]
7→
[
d −b
−c a

]
.

(ii) G is flat if, and only if, A/J ∼= K ⊕K with involution (a, b) 7→ (b, a).

Proof. By Lemma 3.5(i), the only idempotents of A with e = e∗ are 0 and 1.
Furthermore, by Proposition 3.9, G is hyperbolic and so A has a hyperbolic idem-
potent e∗ = 1 − e. As A is Artinian (in fact finite), idempotents lift over J , and
by [W5, Section 5.4] they lift retaining the self-adjoint and hyperbolic relationships
respectively. Therefore, A has such idempotents if, and only if, A/J has them.
Now we apply a classification due to Osborn (see [W1, Theorem 4.26]) to assert the
only choices for A/J are M2(K) and K⊕K together with the given involutions. In
the first case the dimension of G/Z(G) is even and hence corresponds to the sloped
case. In the second case the group is flat. �
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3.5. Uniqueness of orthogonal and hyperbolic decompositions. As we men-
tioned earlier, our algorithms for bimaps of genus 2 will utilize both types of decom-
position described in the previous section. When we do so, we shall need to know
that our particular choices are in fact generic. More precisely, we shall require the
following transitivity facts. (Recall, from Proposition 2.2, that isoclinisms coincide
with isomorphisms for groups of exponent p.)

Theorem 3.15. If G is a finite p-group of genus 2 then the group of autoclinisms
of G acts transitively on

(a) the set of fully-refined central decompositions of G, and
(b) the set of hyperbolic pairs of G.

In fact the subgroup of autoclinisms that centralize Z(G) is transitive on both sets.

Proof. For (a), refer to [W1, Theorem 6.6]. Corollary 3.14 tells us that ◦G has no
indecomposable summands of orthogonal type, and so Isom(◦G) is transitive on its
fully-refined orthogonal decompositions.

The proof of (b) is similar. By Witt’s lemma, the isometries of a nondegenerate
form act transitively on the set of hyperbolic bases. Then, using involutions, one
lifts this action over the radical. �

We stress that central product decompositions do not, in general, possess such
transitivity [W1, Theorem 1.1(ii)], so groups of genus 2 are somewhat special in
this regard. Even so, Theorem 3.15 does not give rise to a theorem of Krull-
Schmidt type [W1, Definition 2.6]. Indeed, as illustrated by the example below,
identical sets of centrally indecomposable groups may occur as fully-refined central
decompositions of non-isoclinic groups of genus 2. This hints at the difficulties in
using central products within isomorphism tests.

Example 3.16. Let k be any field, and K = k(ω) a quadratic extension of k. Put
H = H1(k)×H1(k)×H1(K), a direct product of Heisenberg groups, and let

N1 =

〈1 0 1
0 1 0
0 0 1

 , I3,
1 0 −1

0 1 0
0 0 1

 ,

I3,
1 0 −1

0 1 0
0 0 1

 ,
1 0 −ω

0 1 0
0 0 1

〉

N2 =

〈1 0 1
0 1 0
0 0 1

 ,
1 0 −1

0 1 0
0 0 1

 , I3
 ,

I3,
1 0 1

0 1 0
0 0 1

 ,
1 0 −1

0 1 0
0 0 1

〉 .
Then each Ni is normal in H, and the groups Gi = H/Ni have genus 2 over k.
Moreover, each group has a full-refined central decomposition consisting of two
copies of a group X, and one copy of a group Y , yet G1 and G2 are non-isomorphic
(in fact non-isoclinic). For, if ω has minimum polynomial x2 − ax − b, then for

i = 1, 2, the bimap ◦Gi
is represented by

{[
0 I4
−I4 0

]
,
[

04 Li

−Lt
i 04

]}
, where

L1 =


0

1
0 1
b a

 L2 =


0

0
0 1
b a

 .
Since L1 has three distinct eigenvalues in K, and L2 only two, the centralizers,
C(L1) and C(L2), are non-isomorphic algebras. For i = 1, 2, by [BW3, Lemma
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3.2], A(◦Gi
) is isomorphic to M2(C(Li)), so A(◦G1

) and A(◦G2
) are non-isomorphic

algebras. It follows that G1 and G2 are non-isoclinic.

3.6. A characterization of the indecomposable groups of genus 2. We are
almost ready to prove Theorem 1.2. Our approach requires that we examine the
adjoint ring of the commutation bimap of these groups in greater depth. In partic-
ular, we provide a rather complete description of the bimap obtained by forming a
tensor product over such rings (Theorem 3.18). As well as helping us prove The-
orem 1.2, this will provide the foundation for the adjoint-tensor isomorphism test
for the centrally indecomposable groups of genus 2 that we present in Section 5.

We will need the following convenient characterization of the adjoint ring of an
indecomposable bimap of the sloped type.

Lemma 3.17 ([BW3, Lemma 3.2(i)]). Let ◦ : kd×kd� k2 be an alternating bimap
represented by a pair {Φ1,Φ2} of forms with Φ1 invertible. Then

A(◦) = CMd(k)(σ), where σ = Φ2Φ−1
1 .

In particular, Z(A(◦)) = k[σ] ∼= k[x]/(m(x)), where m(x) is the minimum polyno-
mial of σ. If ◦ is indecomposable, then m(x) = a(x)e with a(x) irreducible.

Note, Lemma 3.17 requires only that Φ1 is invertible and makes no assumption
about the indecomposability of the bimap – we shall have more to say on this point
in Remark 3.20 after we prove the following crucial result.

Theorem 3.18. Let k be a field and ◦ : k2n × k2n� k2 an indecomposable, alter-
nating bimap represented by a pair {Φ1,Φ2} with Φ1 invertible. Let σ = Φ2Φ−1

1 ,
and let m(x) ∈ k[x] be the minimal polynomial of σ. Then

k2n ⊗A(◦) k
2n = k2n ∧A(◦) k

2n ∼= k[x]/(m(x)),(3.19)

and ⊗ : k2n×k2n� k2n⊗A(◦)k
2n is a fully-nondegenerate alternating k[x]/(m(x))-

form. Furthermore, the isomorphism in (3.19) can be computed in polynomial time.

Proof. By Lemma 3.7, there is a decomposition k2n = E⊕F with E◦E = 0 = F ◦F ,
and by Theorem 3.15 this decomposition is unique up to a choice of basis. Thus,
we may assume

Φ1 =

[
0 In
−In 0

]
and Φ2 =

[
0 Ψ
−Ψtr 0

]
,

where Ψ is in Rational Canonical Form, so that

σ = Φ2Φ−1
1 =

[
Ψ 0
0 Ψtr

]
.

By Lemma 3.17, A(◦) = CM2n(k)(σ) = M2(CMn(k)(Ψ)). The structure of centralizer
matrices is well-studied and is determined by the representation of Ψ. In partic-
ular, there is a divisor chain as(x)|as−1(x)| · · · |a1(x) of m(x) = a1(x) and, using
companion matrices C(ai),

Ψ = diag(C(a1), . . . , C(as)).

Correspondingly E = E1 ⊕ · · · ⊕ Es as a k[x]-module, with x acting as Ψ. The
centralizer of Ψ is a chequered matrix, cf. [P, p. 42],

CMn(k)(Ψ) =
{

[[Mij ]] : 1 6 i, j 6 s, Mij ∈ Homk[x](Ei, Ej)
}
.
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As E1 is a faithful representation of k[Ψ], so Homk[x](E1, Ei) = Homk[x](k[x], Ei) ∼=
Ei as k[x]-modules. Hence, there exists a matrix

Mα =


α̃1 α̃2 · · · α̃s
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 ∈ CMn(k)(Ψ), e1Mα = (α1, . . . , αs) = α ∈ E.

In particular, E and F are cyclic k[x]-modules, say

E = e1CMd/2(k)(Ψ) and F = f1CMd/2(k)(Ψ).

We can now determine the structure of the bimap ⊗A. Let α = (α1, . . . , αs) ∈ E
and β = (β1, . . . , βs) ∈ F . If α·β = α1β1+· · ·+αsβs denotes the usual dot-product,
then

α⊗A β = e1

[
Mα

0n

]
⊗A f1

[
0n

Mβ

]
= e1

[
Mα

00

] [
M tr
β

0n

]
⊗A f1

= (α · β)(e1 ⊗A f1).

In particular, k2n ⊗A k2n = k[x](e1 ⊗ f1) is a cyclic k[x]-module, so the tensor
product is a form. All of the necessary constructions are carried out in polynomial
time so the result follows. �

Remark 3.20. Although our application to Theorem 1.2 concerns indecomposable
bimaps of genus 2, Theorem 3.18 again requires only that Φ1 is invertible (just like
Lemma 3.17). This is explained in Section 6. We extend the notion of “sloped” to
any alternating bimap of genus 2 represented by {Φ1,Φ2} with Φ1 invertible, and
refer to σ = Φ2Φ−1

1 as a slope of ◦. The slope is crucial to the work in [BW3] but
also features in earlier works such as [GG,BF].

We now can prove Theorem 1.2, which in our more general setting now says
that if G is a centrally indecomposable p-group of genus 2 over a field k, then it is
isoclinic to one of the following two types of groups:

(i) (sloped case) a quotient by a central subgroup N of a Heisenberg group,

H =


1 e w

0 1 f
0 0 1

 :
e, f, w ∈ k[x]/(a(x)c),
a(x) irreducible

 ,

where as matrices 1−N is a subspace of 1− [H,H] of codimension 2; or
(ii) (flat case) the matrix group

H[ =




I2

e1 · · · em 0
0 e1 · · · em

w1

w2

Im+1

f0

...
fm
1


: ei, fj , w` ∈ k


.
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Proof. Following Proposition 3.9, every centrally indecomposable group G of genus
2 determines a pair {Φ1,Φ2} of alternating forms as in (3.10). It remains to connect
the two possible matrix pairs to the corresponding matrix groups described in the
theorem.

Suppose G is sloped and let m(x) = a(x)c be the minimum polynomial of ◦G :
k2n × k2n � k2. Set H = H(R), the Heisenberg group over R = k[x]/(a(x)c).
Then the commutation bimap ◦H : R2×R2 � R is an alternating R-form. Choose
an isomorphism ϕ : H/Z(H)→ G/Z(G) (both are isomorphic to k2n).

By Theorem 3.18, ◦G factors through ◦H yielding a projection π : R → G′ with
(uϕ ◦H vϕ)π = u ◦G v. This gives rise to an isomorphism ϕ̂ : H ′/ kerπ → G′, and
(ϕ, ϕ̂) is a pseudo-isometry from ◦G to ◦H . Furthermore, if

N =


1 0 w

0 1 0
0 0 1

 : wπ = 0

 ,

then G is isoclinic to H/N .
Next, we consider the flat case. Let Eij indicate the matrix with 1 in position ij

and 0 elsewhere. For a ∈ {1, . . . ,m}, b ∈ {1, . . . ,m+ 1}, c ∈ {1, 2}, and t ∈ k, set

Ma(t) = I + tE1(a+2) + tE2(a+3),

Nb(t) = I + tE(2+b)(m+4), and

Zc(t) = I + tEc(m+4).

Then H[ = 〈M1(t), . . . ,Mm(t), N0(t), . . . , Nm(t), Z1(t), Z2(t) : t ∈ k〉. From matrix
multiplication we see [Ma(t),Ma′(t

′)], [Nb(t), Nb′(t
′)], [Ma(t), Zc(t

′)], [Nb(t), Zc(t
′)],

and [Zc(t), Z
′
c(t)] are all trivial. Furthermore,

[Ma(t), Nb(t
′)] =

 Z1(tt′) a = b,
Z2(tt′) a+ 1 = b,

1 else.
(3.21)

In particular, [H[, H[] = 〈Z1(t), Z2(t) : t ∈ k〉, and k is the centroid of the bimap
of commutation in H[. Also, {M1(1), . . . ,Mm(1), N1(1), . . . , Nm+1(1)} maps to a
k-basis for V = H[/[H[, H[] and {Z1(1), Z2(1)} is a k-basis for W = [H[, H[].
From (3.21), the structure constants coincide with a flat indecomposable pair of
alternating forms. Thus, if G is centrally indecomposable and flat, then G and H[

are isoclinic. �

3.7. Generalized discriminants and Pfaffians. We have previously stated that
Theorem 1.2 is not enough to decide isomorphism among groups of genus 2 over a
field k. So, what else is needed? The main result of this section provides a necessary
and sufficient condition for isomorphism between groups of genus 2 whose indecom-
posable central factors are all sloped. This in turn gives rise to an isomorphism
test that is effective when |k| is small.

In the foregoing discussion of the bimap ◦ = ◦G : V ×V �W associated to such
a group, G, we have worked exclusively with the k-space V = G/Z(G). Now we
turn our attention to W = G′ = k2. If G′ < Z(G) then Z(G) = G′ × Zsp and for
some G0 < G, G = G0 × Zsp and G′0 = Z(G0); thus, we may assume G′ = Z(G). If
◦ : G/G′ ×G/G′� G′, then

1→ Isom(◦)→ ΨIsom(◦)→ Aut(W )
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is an exact sequence, and by Proposition 2.4,

1→ CAut(G)(W )→ Aut(G)→ Aut(W )

is an exact sequence. By assumption ◦ has centroid k a field. As Aut(G) acts on
the centroid, C(◦) = k, its action on W is k-semilinear so we may replace Aut(W )
with ΓL(2, k). If {Φ1,Φ2} is a pair of alternating forms representing ◦, we wish
to study the action of the pseudo-isometry group ΨIsom(◦) on the 2-dimensional
k-space spanned by this pair. In particular, we are interested in deciding when
(and how) an element of ΓL(2, k) lifts to ΨIsom(◦). We begin by generalizing the
notions of “discriminant” to arbitrary lists of square matrices, and of “Pfaffian” to
pairs of alternating forms.

The discriminant of a bilinear form Ψ is the square class of the determinant. In
this way it is invariant up to isometry, since det(XΨXtr) = det(X)2 det(Ψ). For
systems {Ψ1, . . . ,Ψm} of forms we define the generalized discriminant as follows:

disc(Ψ1, . . . ,Ψm) = det(x1Ψ1 + · · ·+ xmΨm) ∈ k[x1, . . . , xm].

We shall work with such systems up to isotopism, which means we can modify by
independent matrices X and Y to arrive at

disc(XΨ1Y, . . . ,XΨmY ) = det(X) det(Y ) disc(Ψ1, . . . ,Ψm).

Thus, disc(Ψ1, . . . ,Ψm) is a homogenous polynomial defined only up to a non-zero
scalar multiple – this is an interesting isotopism invariant so long as m > 1.

Next, consider a pair {Φ1,Φ2} of alternating forms representing a sloped bimap
of genus 2. There exist subspaces E and F of equal dimension relative to which,

(i = 1, 2) Φi =

[
0 Ψi

−Ψt
i 0

]
,

so disc(Φ1,Φ2) = disc(Ψ1,Ψ2)2. We therefore define the generalized Pfaffian,

Pf(Φ1,Φ2) = disc(Ψ1,Ψ2).

We will use a natural action of ΓL(2, k) on the homogeneous polynomials in k[x, y].
For α̂ =

([
a b
c d

]
, τ
)
∈ GL(2, k) o Gal(k), define

f α̂(x, y) = fτ (ax+ by, cx+ dy).

We now integrate the Pfaffian of a sloped pair with our understanding of centrally
indecomposable groups of genus 2 to interpret an isomorphism invariant introduced
by Vishnevetskĭı [V1, V2] in the case when k = Zp. A version of the following
theorem was announced in [V1] but only the forward direction was proved. We
need (a constructive version of) the converse for our isomorphism test so we provide
a complete proof.

Theorem 3.22. Let {Φ1,Φ2} and {Λ1,Λ2} be alternating k-forms, each written
relative to a fully-refined orthogonal decomposition; so, for i = 1, 2,

Φi = diag
(

Φ
(1)
i , . . . ,Φ

(s)
i

)
Λi = diag

(
Λ

(1)
i , . . . ,Λ

(t)
i

)
.

For α̂ ∈ ΓL(2, k), there is a pseudo-isometry (α, α̂) from {Φ1,Φ2} to {Λ1,Λ2} if,
and only if, s = t and there is a permutation σ of {1, . . . , s} such that for all i,

Pf
(

Φ
(i)
1 ,Φ

(i)
2

)α̂
≡ Pf

(
Λ

(iσ)
1 ,Λ

(iσ)
2

)
(mod k×).(3.23)
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Proof. We begin with the forward direction. Assume (α, α̂) ∈ ΓL(2n, k)× ΓL(2, k)
is a pseudo-isometry from {Φ1,Φ2} to {Λ1,Λ2}. The transitivity result in The-
orem 3.15 may be recast in the language of orthogonal decompositions for the
associated bimaps. In particular, there is an isometry carrying the basis of the
fully-refined orthogonal decomposition of {αΦ1α

tr, αΦ2α
tr} to that of {Λ1,Λ2}. As

the former has s terms, and the latter t terms, it follows that s = t.
Let Φi = αΦiα

tr (the semilinear action is coordinatewise) and so

Φi = diag
(

Φ
(1)

i , . . . ,Φ
(s)

i

)
is a fully-refined orthogonal decomposition of

{
Φ1,Φ2

}
. Since (α, α̂) is a pseudo-

isometry, it follows that there exists a permutation σ of {1, . . . , s} such that(
Φ

(i)

1 ,Φ
(i)

2

)α̂
=
(

Λ
(iσ)
1 ,Λ

(iσ)
2

)
.

Hence, observing that

Pf
(

Φ
(i)
1 ,Φ

(i)
2

)α̂
= Pf

((
Φ

(i)
1 ,Φ

(i)
2

)α̂)
,

and that Pf (Φ1,Φ2) ≡ Pf
(
Φ1,Φ2

)
(mod k×), we see that (3.23) holds for this σ.

Conversely, suppose α̂ = (µ̂, τ) ∈ GL(2, k) o Gal(k) satisfies (3.23). It suf-
fices to find, for each i, an independent αi such that (αi, α̂) is a pseudo-isometry

from
{

Φ
(i)
1 ,Φ

(i)
2

}
to
{

Λ
(iσ)
1 ,Λ

(iσ)
2

}
. Indeed, if this is the case, then

(
(α1 ⊕ · · · ⊕

αs)Σ(σ−1), α̂
)

is a pseudo-isometry from {Φ1,Φ2} to {Λ1,Λ2}, where Σ(σ−1) is the

permutation matrix associated to σ−1. Therefore, we assume ◦ and • (represented
by {Φ1,Φ2} and {Λ1,Λ2}, respectively) are indecomposable. By Lemma 2.3, a semi-
linear pseudo isometry must use the same Galois automorphism τ in the domain and
codomain. Hence, we are only concerned with finding µ such that

(
(µ, τ), (µ̂, τ)

)
is

a pseudo-isometry from {Φ1,Φ2} to {Λ1,Λ2}. We consider two special cases for µ̂
before we treat the general case.

First, suppose that µ̂ fixes an indeterminant of k[x, y], modulo k×. By Proposi-
tion 3.9, we may assume that there are bases relative to which

Pf(Φ1,Φ2) = det(xI + yC) Pf(Λ1,Λ2) = det(xI + yD).

Then, either Pf(Φ1,Φ2)α̂ ≡ det(xI + yM) for some M , or Pf(Φ1,Φ2)α̂ ≡ det(xN +
yC) for some N . Note that either option is equivalent to Pf(Λ1,Λ2) = det(Ix+Dy)
since Pf(Φ1,Φ2)α̂ ≡ Pf(Λ1,Λ2). As {Φ1,Φ2} and {Λ1,Λ2} represent indecompos-
able bimaps, {I,M} (or {N,C} as the case may be) and {I,D} are indecomposable
pairs of matrices. Hence, by the Kronecker-Dieudonné theorem, there are matri-
ces X and Y such that X{I,D}Y = {I, C}τ = {I, Cτ}. If µ = diag(X,Y tr) and
α = (µ, τ), then (α, α̂) is a pseudo-isometry from {Φ1,Φ2} to {Λ1,Λ2}, so any lower
or upper triangular µ̂ can be lifted.

Next, suppose µ̂ interchanges x and y. Thus, we may assume there are bases
such that

Pf(Φ1,Φ2) = (xI + yC) Pf(Λ1,Λ2) = (xD + yI).

Arguing as before, there are matrices X and Y such that X{D, I}Y = {I, Cτ} and
if µ = diag(X,Y tr) and α = (µ, τ), then (α, α̂) is a pseudo-isometry from {Φ1,Φ2}
to {Λ1,Λ2}.
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In the general case, µ̂ is the product of β̂γ̂δ̂ where β̂ and γ̂ fix x or y (modulo k×),

and δ̂ transposes or fixes them (an LUP-decomposition). Here, we lift µ̂ with three
iterations using the two special cases already treated. Therefore, with α = (µ, τ),
the pair (α, α̂) is a pseudo-isometry from {Φ1,Φ2} to {Λ1,Λ2}, and so the theorem
follows. �

From Theorem 3.22, since the equivalence is modulo k×, we need only consider
α̂ ∈ PΓL(2, k). Hence, we obtain the following corollary.

Corollary 3.24. Let {Φ1,Φ2} and {Λ1,Λ2} be pairs of sloped d × d forms over
Fq, for q = pe. There exists an algorithm that determines if the two are pseudo-
isometric using O(q3e+ d3) field operations.

Proof. The rational canonical form of a d× d matrix is computed using O(d3) field
operations [S4]. �

4. The Adjoint-Tensor Method

Having developed the necessary foundation, we turn now to our isomorphism
tests. To emphasize that our algorithms apply only to finite groups and fields
we shall henceforth write Fq in place of k, where Fq is an extension of Zp. Via
Proposition 2.4 questions of isomorphism between finite p-groups of class 2 are
reduced to ones of pseudo-isometry between Fq-bimaps. Details of this reduction –
and the isomorphism tests it leads to – are given in Section 7. Our current focus is
the following problem.

PseudoIsometry ( ◦ , • )

Given: alternating Fq-bimaps ◦, • : Fdq × Fdq � Feq
Return: a pseudo-isometry from ◦ to •, if such exists.

We can, in principle, return all pseudo-isometries from ◦ to • as a coset of the
group ΨIsom(◦). That group is often the focus of attention because it relates directly
to the automorphism group of a p-group. We shall concentrate here on testing for
pseudo-isometry and explain how to adapt our methods to finding generators for
ΨIsom(◦) in Section 6.4.

The first simplification is to reduce from general (Fq-semilinear) pseudo-isometries
to Fq-linear pseudo-isometries. The following result states that testing for Fq-linear
pseudo-isometry is the heart of matter.

Theorem 4.1. Given an algorithm to solve Fq-linear pseudo-isometry that runs in
time t(n), n = d log q, then there is an algorithm that solves Fq-semilinear pseudo-
isometry in time O(t(n) log q).

Proof. As the actions on radicals have no restrictions, we may assume that the
given bimaps are fully-nondegenerate. Let ◦, • : V × V � W be an instance of
Fq-semilinear pseudo-isometry. For each σ ∈ Gal(Fq), proceed as follows. Define

u ∗ v = uσ ◦ vσ, u#v = (u • v)σ,

and test if there is a Fq-linear pseudo-isometry (ϕ, ϕ̂) from ∗ to #. If so, it follows
that ((ϕ, σ), (σ, ϕ̂)) ∈ (GL(V )nGal(Fq))×(Gal(Fq)oGL(W )) is a pseudo-isometry
from ◦ to •, namely u(ϕ, σ)◦v(ϕ, σ) = uϕ∗vϕ = (u◦v)(σ, ϕ̂). If this fails for every
σ ∈ Gal(Fq) then ◦ and • are not pseudo-isometric. �
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In view of Theorem 4.1, we henceforth assume that all pseudo-isometries are
linear over the field of definition. In particular, ΨIsom(◦ : Fdq ×Fdq � Feq) will mean
the group of Fq-linear pseudo-isometries of ◦.

The question of testing alternating bimaps for pseudo-isometry is one that arises
also in the generic method for group isomorphism – the p-group generation algo-
rithm – though framed in cosmetically different terms; see [O]. The basic approach
is as follows. As both bimaps are alternating, they factor through the alternating
tensor bimap ∧ : Fdq×Fdq � Fdq∧Fdq with induced maps ◦̂, •̂ : Fdq∧Fdq → Feq. The group

GL(d,Fq) acts naturally on Fdq∧Fdq , and ◦ and • are pseudo-isometric if, and only if,
an element of GL(d,Fq) maps ker ◦̂ to ker •̂. Thus, to determine pseudo-isometry,
we must solve a subspace transporter problem, which is notoriously difficult even for
“well understood” actions like the exterior square representation. In practice, it is
possible to proceed by a direct orbit calculation only for quite modest values of d
and q.

If ◦ and • have a constrained structure – such as the bimaps arising in [LW] –
specialized techniques may be developed to compute orbits efficiently. Inspired by
the need to bridge the gap between slow, generic methods, and very fast, highly
specialized ones, in [BW2] the first and third authors proposed a new general tech-
nique called the adjoint-tensor method. The method, which we outline in general
below, is particularly well-suited to the alternating bimaps of genus 2; most of re-
maining content of the paper is concerned with the application of adjoint-tensor to
this case.

PseudoIsometry ( ◦, • : Fdq × Fdq � Feq )

1. Compute A = A(◦) and A(•).
2. Test if there exists ρ ∈ GL(d,Fq) with A(•)ρ = A; if not, return false.

Replace • with an isometric bimap, ?, so that A = A(◦) = A(?).
3. Compute the kernels of the induced maps ◦̂, ?̂ : Fdq ∧ Fdq → F2

q.
4. Construct generators for ΨIsom(∧A).
5. Find (ϕ, ϕ̂) ∈ ΨIsom(∧A) with (ker ◦̂)ϕ̂ = ker ?̂;

return the pseudo-isometry (ρϕ, ϕ̂) from ◦ → •.

Figure 4.1. The adjoint-tensor approach to solving PseudoIsometry.

Step 1 computes the two adjoint rings, which is no worse than solving a system of
ed2 equations in 2d2 variables. In certain situations – notably sloped genus 2 bimaps
– one can extend the practical range by avoiding these large linear systems [BW3].

No polynomial-time solution is known for the general problem in step 2. It asks
whether subalgebras of Md(Fq) are conjugate which, beyond just being isomorphic,
requires that they are identically represented on Fdq . This leads to the notion of
module similarity, a problem which was shown in [BW1] to be as hard as graph
isomorphism.

To understand step 3, recall from Section 3.3 that the adjoint ring A = A(◦)
is the largest ring, B, such that ◦ factors through the tensor product Fdq ⊗B Fdq .
Since, for us, the bimap ◦ is alternating, it additionally factors through the exterior
product Fdq ∧A Fdq (cf. Theorem 3.18), so there is an induced map ◦̂ : Fdq ∧A Fdq → Feq
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such that

(∀u, v ∈ V ) u ◦ v = (u ∧ v)◦̂.

Computing ker ◦̂ and ker ?̂ amounts to solving a system of O(d2) linear equations.
Step 4 builds the group that acts on V ∧A V . As we noted earlier, GL(V ) acts

naturally on the components of the traditional exterior square V ∧ V . To respect
the tensor over A we must instead use the group ΨIsom(∧A), the structure of which
is described in [BW2, Theorem 4.5]. The description requires one to compute the
normalizer of A, and the complexity of this problem depends critically on structural
properties of A and on its representation.

The final component (step 5) is the same as the conclusion of the p-group gen-
eration algorithm described earlier. Once again ◦ and ? are pseudo-isometric if,
and only if, ker ◦̂ and ker ?̂ are in the same orbit, this time under the action of
ΨIsom(∧A). Hence, we must solve the subspace transporter problem for the repre-
sentation of ΨIsom(∧A) on Fdq ∧A Fdq .

In summary, steps 2 (module similarity), 4 (normalizers of matrix rings), and 5
(subspace transporters) are each known to be at least as hard as graph isomorphism
[BW1, Theorem 1.2; BW2, Theorem 4.5(iii); LM]. It seems, then, that adjoint-
tensor merely turns one difficult problem into three! The idea, though, is that each
new “hard problem” is either smaller in size, or has a controlled structure that
admits a more efficient solution. This is exactly the case for groups of genus 2.

5. Indecomposable Bimaps of Genus 2

We now restrict to bimaps of genus 2 and develop an effective algorithm for
PseudoIsometry in this case. We start in this section by further restricting to
(orthogonally) indecomposable bimaps. Our goal is the following result.

Theorem 5.1. There is a polynomial-time algorithm that, given indecomposable,
alternating bimaps ◦, • : Fdq × Fdq � F2

q of genus 2, decides if the bimaps are
pseudo-isometric and, if so, constructs a k-linear pseudo-isometry, namely (ϕ, ϕ̂) ∈
GL(d,Fq)×GL(2,Fq) such that uϕ • vϕ = (u ◦ v)ϕ̂ for all u, v ∈ Fdq . The algorithm
is deterministic if p is bounded and Las Vegas otherwise.

Recall, the qualification of Las Vegas versus deterministic in Theorem 5.1 (and
in later theorems) arises only from the need to factor polynomials.

5.1. Standard indecomposable pairs of matrices. To prove Theorem 5.1 we
apply the “flat-sloped” dichotomy of Theorem 1.2 to the associated pairs {Φ1,Φ2}
of alternating forms. It will be helpful to select a basis relative to which

Φ1 =

[
0 Ψ1

−Ψtr
1 0

]
and Φ2 =

[
0 Ψ2

−Ψtr
2 0

]
,(5.2)

and {Ψ1,Ψ2} is given by the appropriate part of Theorem 3.8. We begin by finding
a totally isotropic decomposition for the pair (see Lemma 3.7). This is done in
polynomial time by finding a hyperbolic pair of idempotents in the adjoint ring of
the pair, as we did in the proof of Theorem 3.6(ii). By changing to a basis that
respects this totally isotropic decomposition, we obtain a pair of forms as in (5.2)
with {Ψ1,Ψ2} an arbitrary indecomposable pair of matrices. It remains to find
matrices X,Y such that {XΨ1Y,XΨ2Y } has the desired form.
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The sloped case, namely Theorem 3.8(i), has been discussed from the point
of view of algorithms in several recent papers; see [GG, BW3] for example. The
conversion depends only on the sloped aspect, and so works for decomposable pairs.

Suppose Ψ1,Ψ2 ∈ Mn,n+1(Fq) is an indecomposable pair, where d = 2n + 1.
Compute X ∈ Mn(Fq), Y ∈ Mn+1(Fq) such that XΨ1Y = [In|0], the standard
matrix for Ψ1, using Gaussian elimination. We now modify X and Y so that
XΨ1Y = [In|0] and XΨ2Y = [0|In]. We do this by successive approximations.

First, write XΨ2Y = [U |utr], and find B ∈ GLn(Fq) such that BUB−1 = R

is in generalized Jordan normal form. Reassign X := BX and Y := Y
[
B−1 0

0 1

]
.

As the pair is indecomposable, R is a single companion matrix, say R =
[

0 In−1

α v′

]
.

Secondly, write XΨ2Y = [R|vtr] and find T in the cyclic algebra generated by R

sending vtr to (0 . . . 01)tr. Reassign X := TX. Finally, write XΨ2Y =
[

0 In−1 0

β b′ 1

]
,

put b := (β b′) ∈ Fnq , and reassign Y := Y
[
In 0
−b 1

]
.

5.2. The flat case. It is immediate from our discussion of this case in the pre-
ceding section that two flat, indecomposable bimaps of genus 2 are isometric, and
Theorem 5.1 holds in this case. Recall, however, we shall eventually require genera-
tors for ΨIsom(◦). We address this problem for general bimaps later in Section 6.4,
but we can resolve the matter now for flat, indecomposable bimaps of genus 2.

Proposition 5.3. If ◦ : Fdq × Fdq � F2
q is a flat, indecomposable bimap of genus 2,

then there is an epimorphism ΨIsom(◦)→ ΓL(2,Fq) with kernel Isom(◦).

Proof. For e = (e1, . . . , en) ∈ Fnq , define M = M(e) =
[
e1 ··· en 0
0 e1 ··· en

]
and set

E = {M(e) : e ∈ Fnq } 6M2×(n+1)(Fq).

Then, the usual matrix multiplication

× : E ×M(n+1)×1(Fq)�M2×1(Fq)

is described by the system of forms Ψ = {[In|0], [0|In]}. As ◦ is given by a pair

of forms Φi =
[

0 Ψi

−Ψtr
i 0

]
, it follows that every isotopism (α, β; γ) of × induces

a pseudo-isometry (α ⊕ β, γ) of ◦, so it suffices to show that ΓL(2,Fq) lifts to
autotopisms of × acting faithfully on M2×(n+1)(Fq).

For e = (e1, . . . , en) ∈ Fnq , define fe(x, y) = e1x
n + · · ·+ eix

n−iyi + · · ·+ eny
n ∈

Fq[x, y]. Then Me 7→ fe(x, y) is a linear bijection from E = {M(e) : e ∈ Fnq } to
the set of homogeneous polynomials in Fq[x, y] of degree n. Let ρ : ΓL(2,Fq) →
ΓL(n + 1,Fq) denote the faithful representation arising from the natural action of
ΓL(2,Fq) on the latter. For g ∈ ΓL(2,Fq), define

M(e)λg := gM(e)(g−1ρ).

Then (λg, gρ; g) is an isotopism of •, and the result follows. �

5.3. The sloped case. Recall that an alternating bimap ◦ : Fdq × Fdq � F2
q of

genus 2 is sloped if we can represent it by a pair {Φ1,Φ2} with Φ1 nondegenerate.
Our goal is to complete the proof of Theorem 5.1 by presenting a test for k-linear
pseudo-isometry between two sloped, indecomposable bimaps ◦, • : Fdq × Fdq � F2

q.

We will use the adjoint-tensor method of Section 4, referring to the pseudo-code
in Figure 4.1. Recall that we must resolve three problems:
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Line 2 Given adjoint algebras A(◦) and A(•), find ρ ∈ GL(d,Fq) with A(•)ρ =
A(◦) (if such exists).

Line 4 Given A = A(◦), build generators for ΨIsom(∧A).
Line 5 Solve the “transporter problem”: given subspaces U, V of Fdq ⊗A Fdq find

(ϕ, ϕ̂) ∈ ΨIsom(∧A) sending U to V , or prove that no such (ϕ, ϕ̂) exists.

We consider each problem in turn.

5.3.1. Conjugating the adjoint algebras. As we noted in Section 4, conjugacy of
algebras is very hard in general, but an efficient solution exists in our setting.
This relies on the special nature of adjoint algebras for sloped bimaps of genus 2.
Any such bimap ◦ is represented by a pair {Φ1,Φ2} of alternating forms with Φ1

invertible, and its slope σ = Φ2Φ−1
1 is invariant under basis change in Fdq – that is,

invariant in Isom(◦). By Lemma 3.17, A(◦) = CMd(Fq)(σ), so

Z(A(◦)) = Fq[σ] ∼= Fq[x]/(m(x)),

where m(x) is the minimum polynomial of σ. The conjugacy problem for cyclic
algebras has an efficient solution.

Theorem 5.4 ([BW1, Theorem 1.3]). There is a polynomial-time algorithm that,
given cyclic algebras A = Fq[α], B = Fq[β], for α, β ∈Md(Fq), finds ρ ∈ GL(d,Fq)
with Aρ = B, or decides that no such ρ exists.

This leads to a resolution of our first problem.

Corollary 5.5. There is a polynomial-time algorithm that, given sloped bimaps
◦, • : Fdq × Fdq � F2

q of genus 2, finds ρ ∈ GL(d,Fq) such that A(◦)ρ = A(•), or
decides that no such ρ exists.

Proof. By Lemma 3.17, A(◦) and A(•) are centralizers of slopes σ◦ and σ•, respec-
tively. Furthermore, A(◦) and A(•) are conjugate if, and only if, their centers are
conjugate. The result now follows from Theorem 5.4. �

5.3.2. The properties of ∧A. To describe ΨIsom(∧A) we need the following result.

Theorem 5.6 ([BW2, Theorem 1.5]). If ◦ : V ×V �W is an alternating k-bimap
with adjoint ring A = A(◦), then ΨIsomk(∧A) is faithfully represented on V as

N∗(A) = {g ∈ GL(d, k) : Ag = A and (xg)∗ = (x∗)g for all x ∈ A}.

Using the general structure of N∗(A) laid out in [BW2, Theorem 4.5] together
with Theorem 3.18, we gain a very detailed understanding of ΨIsom(∧A) when
◦ : Fdq × Fdq � F2

q is a sloped, indecomposable bimap of genus 2. Put

K = Fq[x]/(m(x)),

where m(x), the minimal polynomial of the slope of ◦, is a power of an irreducible
polynomial. Hence, K ∼= L[t]/(te) where L/Fq is an algebraic field extension, and

1 −→ Isom(∧A) −→ ΨIsom(∧A) −→ ΓL(1,K) −→ 1

is a short exact sequence, where Isom(∧A) is the kernel of the action of ΨIsom(∧A)
on V ∧A V . The algorithms to find generators and further structure of isometry
groups were given in [BW4,BW3]. Hence, the group we must understand is

ΨIsom(∧A)/ Isom(∧A) ∼= ΓLFq
(1,K) = K× o AutFq

(K).
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The group AutFq
(K) = AutFq

(L[t]/(te)) satisfies

1→ Σ→ AutFq
(K)→ ΓLFq

(1, L)→ 1,

where Σ = CAut(K)((t)/(t
2)) is a quotient of the Nottingham group, a well-studied

pro p-group [LGM, Section 12.4]. Generators for ΓLFq
(1, L) = L×oGal(L/Fq) are

known, and Σ consists of substitution automorphisms,

Λa(t) : p(t) 7→ p(a(t)),

where a(t) = t+ a2t
2 + · · · ; it is generated by {Λt+t2 ,Λt+t3}.

5.3.3. Solving the transporter problem. Our final concern is to solve the transporter
problem: given subspaces U, V of Fdq ∧A Fdq , find (α, α̂) ∈ ΨIsom(∧A) sending U to
V , or prove that no such (α, α̂) exists.

Our algorithm handles the Galois group of L by exhaustion. We work with the
remaining part, namely with G := ΣK×, in a more refined manner. To facilitate our
computations, we choose generators for G that produce a convenient factorization.
First, as a consequence of Wedderburn’s Principal Theorem, K× factorizes as Q1o
G1, with Q1 unipotent, and G1 isomorphic to the multiplicative group of a field.
Secondly, as we saw above, there is an analogous factorization, Q2 oG2, of Σ. Put
Q := Q1Q2, and J := J(K), the Jacobson radical of K. The crucial properties of
the factorization QG1G2 for our purpose are as follows:

(i) Q is a unipotent group;
(ii) there are fields L1, L2 such that G1 = L×1 and G2 = L×2 ; and
(iii) G1 acts faithfully on the k-space K/J , and G2 acts faithfully on J/J2.

Before proceeding further, we require two different “transporter” algorithms
that will solve our problem in special cases. The proof of the following result
generalizes an earlier algorithm of L. Rónyai developed for the case of fields; see
[LW, Lemma 4.8].

Lemma 5.7. Let R be a subalgebra of Md(Fq). Given Fq-subspaces X,Y of R with
dimX = dimY > 0, in polynomial time one can find r ∈ R× with Xr = Y , or
decide that no such r exists.

Proof. Let t = dimX = dimY > 0. Find a basis for the Fq-space

S = {a ∈ R : Xa ⊆ Y }

as follows. Let b1, . . . , bn be an Fq-basis for R. Fix bases for X and Y . Let y1, . . . , yt
be the basis for Y , and write yq =

∑n
p=1 γpqbp for 1 6 q 6 t. Now, for each basis

element x =
∑n
i=1 αibi of X, we want all scalars z1, . . . , zn, w1, . . . , wt such that(
n∑
i=1

αibi

) n∑
j=1

zjbj

 =

n∑
i,j=1

αizjbibj =

t∑
p=1

n∑
q=1

γpqwpbq.

Writing each bibj as a linear combination of b1, . . . , bn (these are the structure
constants of R relative to our chosen basis), a basis for S is obtained as the solution
of the resulting linear system in the unknowns z1, . . . , zn, w1, . . . , wt by projecting
onto the zi coordinates.

Evidently, if S = 0, no r ∈ R exists with Xr ⊆ Y , so we may assume that S 6= 0.
As we require a unit of R transporting X to Y , we must locate an injective element
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of S if such exists. We present a deterministic method, but in practice such an
element is found more efficiently by random search.

Compute T = {b ∈ R : Y b ⊆ X} as above (interchanging the roles of X and
Y ). Form the set ST = {st : s ∈ S, t ∈ T } ⊂ End(X). Then using the algorithm
of [BL, Theorem 2.4] we prove that there are no invertible elements in ST , or we
construct an invertible element z of the subring generated by ST as a product
z = s1t1s2t2 · · · sntn, si ∈ S, ti ∈ T . In the latter case, s1 is injective. �

Remark 5.8. We intend to apply Lemma 5.7 in the case when X and Y have
codimension 2 in R. By translating the problem to the dual space of R, we can
solve the transporter problem instead for spaces of dimension 2. This reduces the
complexity of computing the Fq-spaces S and T by a factor of O(d).

The following is a special case of the deeper theorem of [L2, Theorem 3.2(7)].
It is also known by many as the “unipotent stabilizer algorithm” (see [S2], for
example).

Lemma 5.9. Let Q be a unipotent subgroup of GL(d,Fq). Given subspaces X,Y
of Fdq , in polynomial time one can find u ∈ Q with Xu = Y if such u exists.

We can now complete the description of our algorithm. Recall that U and V are
given Fq-subspaces of K, J is the Jacobson radical of K, and G = L×1 L

×
2 Q. We

wish to decide if there exists g ∈ G such that Ug = V .

First, construct the representation of L1 on K/J , and use Lemma 5.7 to find
g1 ∈ L×1 such that Ug1 ≡ V (mod J), if such exists. Put U1 = Ug1. Next, construct
the representation of L2 on J/J2, and use Lemma 5.7 again to find g2 ∈ L×2 such
that U1Jg2 ≡ V J (mod J2), if such exists. Put U2 = U1g2. Finally, use Lemma 5.9
to find w ∈ Q with U2w = V , if such exists. Return g := g1g2w. Note, if we failed
to construct any one of the elements g1, g2, w, then there is no g ∈ G transporting
U to V .

Proof of Theorem 5.1. The correctness of the algorithms presented in Sections 5.2
and 5.3 has already been established. It remains to analyze complexity.

The sloped case in Section 5.3 requires more analysis, and we proceed one subsec-
tion at a time. First, conjugating the algebra A(•) to A(◦) is done by Corollary 5.5.
Secondly, building the tensor product F dq ∧A F dq and generators of ΨIsom(∧A) is
done in polynomial time in Section 5.3.2. That leaves Section 5.3.3, which requires
more care. For each γ ∈ Gal(L/Fq) we seek g ∈ AutFq

(K) with (V γ)g = U . This
uses two calls to Lemma 5.7, and one call to Lemma 5.9, which are both polynomial
time. The overall complexity is therefore polynomial, since |Gal(L/Fq)| 6 d

2 . �

6. General Bimaps of Genus 2

We now consider arbitrary alternating bimaps ◦, • : Fdq × Fdq � F2
q of genus 2.

Much of the work has already been done in the indecomposable setting above,
but we must now combine the results of various indecomposables. Here, the theory
becomes difficult. As Example 3.16 shows, for instance, indecomposable factors may
be glued together in different ways to produce bimaps that are not pseudo-isometric.
In spite of these challenges we prove the following extension of Theorem 5.1.

Theorem 6.1. There is an algorithm that, given alternating bimaps ◦, • : Fdq×Fdq �
F2
q of genus 2, constructs (ϕ, ϕ̂) ∈ GL(d,Fq)×GL(2,Fq) such that uϕ•vϕ = (u◦v)ϕ̂
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for all u, v ∈ Fdq , or proves no such pair exists. The algorithm is polynomial time if q
is bounded, or if the number of pairwise pseudo-isometric indecomposable summands
of the input bimaps is bounded. If p is bounded the algorithms are deterministic,
otherwise they are Las Vegas.

Using Theorem 3.6(i), one first constructs a fully-refined orthogonal decompo-
sition of the input bimaps. By Theorem 3.15(i), the multiset of terms in such a
decomposition is unique up to pseudo-isometry. Hence, if the terms in the two
decompositions cannot be paired up pseudo-isometrically, then the bimaps them-
selves are not pseudo-isometric. In particular, if the multisets of dimensions of in-
decomposables are different for the two bimaps, then they are not pseudo-isometric.
Furthermore, assuming the dimensions of the flat indecomposables are compatible,
◦ and • are pseudo-isometric if, and only if, their restrictions to the sum of the
sloped parts are pseudo-isometric. Hence, we may assume that the indecomposable
factors of each bimap are sloped.

We reiterate that deciding pseudo-isometry of ◦ and • is not as straight-forward
as matching up isomorphic sloped indecomposable factors – more subtlety is re-
quired. We present two rather different approaches. The first is very effective when
|Fq| is small, and is based directly on the theory developed in Section 3.7. The sec-
ond, which we use for larger fields, is the adjoint-tensor method. Before proceeding
we must first address a curiosity that can arise in our new setting.

6.1. A rare configuration. Recall that ◦, • : Fdq × Fdq � F2
q are nondegenerate

bimaps whose indecomposable summands are sloped. We would like ◦ and • to be
sloped globally, meaning that each may be represented by a pair of forms {Φ1,Φ2}
with Φ1 nondegenerate. Certainly, an initial choice of basis can produce a repre-
sentative pair of degenerate forms, as the following example for d = 4 shows:

Φ1 =


1

0
−1

0

 Φ2 =


0

1
0
−1

 ,
Here, though, the associated bimap is pseudo-isometric to a bimap represented by
{Φ1 + Φ2,Φ2}, and Φ1 + Φ2 is nondegenerate. When the field is sufficiently large,
we can always make such adjustments. In particular, the following holds.

Lemma 6.2. Let k be an infinite field, and ◦ : kd×kd� k2 a nondegenerate, alter-
nating k-bimap of genus 2. Then ◦ is sloped if, and only if, all of its indecomposable
factors are sloped.

Proof. The forward direction is clear. For the converse, suppose

(i = 1, 2) Φi = diag(Φ
(1)
i , . . . ,Φ

(t)
i ),

represents ◦ and respects a fully-refined orthogonal decomposition, where each

{Φ(j)
1 ,Φ

(j)
2 } is sloped. A linear combination of Φ1,Φ2 is nondegenerate if, and only

if, some evaluation of disc(Φ1,Φ2) ∈ k[x, y] does not vanish. By assumption, each

disc(Φ
(i)
1 ,Φ

(i)
2 ) 6= 0 (as a polynomial), so disc(Φ1,Φ2) =

∏
i disc(Φ

(i)
1 ,Φ

(i)
2 ) 6= 0. As

k is infinite, there is a point not on the variety of disc(Φ1,Φ2). �

For finite fields, the situation is more delicate.
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Lemma 6.3. For every finite field Fq, there is an integer d and an alternating
bimap ◦ : Fdq × Fdq � F2

q, all of whose indecomposable summands are sloped, such
that every pair {Φ1,Φ2} of forms representing ◦ consists of degenerate matrices.

Proof. Consider a pair {Φ1,Φ2} representing an alternating bimap ◦ : Fdq×Fdq � F2
q.

If no nondegenerate linear combination of Φ1,Φ2 exists, then the Pfaffian Pf(Φ1,Φ2)
vanishes on all of PG(1,Fq). This means that

∏
ω∈Fq

(x − ωy) ∈ Fq[x, y] divides

Pf(Φ1,Φ2). For each ω ∈ Fq,

Pf

([
0 1
−1 0

]
,

[
0 ω
−ω 0

])
= x− ωy.

The orthogonal sum of all such pairs yields a pair of forms whose discriminant
vanishes on PG(1,Fq), but whose indecomposable summands are all sloped. �

Fortunately, our analysis comes to the rescue. The following scholium allows us
to treat Fq as a “small” field whenever such a configuration occurs.

Lemma 6.4. If ◦ : Fdq × Fdq � F2
q is an alternating non-sloped bimap, all of whose

indecomposable summands are sloped, then q < d.

Proof. Let {Φ1,Φ2} represent ◦ : Fdq×Fdq � F2
q. Then Pf(Φ1,Φ2) is a homogeneous

polynomial of degree d
2 . As ◦ is non-sloped, however, the proof of Lemma 6.3 shows

that Pf(Φ1,Φ2) is divisible by
∏
ω∈Fq

(x− ωy) of degree q. Hence, q 6 d
2 < d. �

6.2. Pfaffian test for small fields. Let ◦, • : Fdq × Fdq � F2
q be two given bimaps

whose indecomposable summands are all sloped. Write each bimap relative to a
fully-refined orthogonal decomposition, and represented, as in Theorem 3.22, by a

pair {Φ1,Φ2} with Φi = diag
(

Φ
(1)
i , . . . ,Φ

(s)
i

)
.

To each pair we associate a collection {Pf(Φ
(i)
1 ,Φ

(i)
2 ) : 1 6 i 6 s} of homogeneous

polynomials. Then, using Theorem 3.22, we can test whether or not ◦ and • are
pseudo-isometric by exhaustively checking every element α̂ ∈ PΓL(2,Fq) to see if
it yields an equivalence between the two collections. Moreover, Theorem 3.22 is
constructive: for suitable α̂ we can compute α ∈ ΓL(d,Fq) such that (α, α̂) is a
pseudo-isometry from ◦ to •.

The complexity of the algorithm outlined above contains an unavoidable factor
of |PΓL(2,Fq)| for the exhaustive search, cf. Corollary 3.24. In practice it works
well when q is small. Recall, if {Φ1,Φ2} satisfies the hypotheses of Lemma 6.4, then
q < d, and we regard d as small. In particular, for the remainder of this section we
assume that alternating bimaps of genus 2 over large fields are sloped.

6.3. Adjoint-tensor test for large fields. The shortcut isomorphism test de-
scribed in the preceding section, while very effective in practical settings, has an
unavoidable factor of O(q3ed3) in its complexity. Hence, the performance of this
technique deteriorates quickly as the size of q increases. We therefore adapted the
adjoint-tensor method to this more general setting. To illustrate the improvement,
for primes p increasing from 3 to 257 we generated five pairs of isomorphic groups
of order p10 and compared the performance of the Pfaffian method to that of the
adjoint-tensor method. The results are displayed in Figure 6.1, where the plots
indicate runtimes for each individual isomorphism test. Unsurprisingly, the timing
for the Pfaffian method is inconsistent as its search through PΓL(2, p) varies from
group to group.
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Figure 6.1. Comparison of adjoint-tensor method with Pfaffian
method for random p-groups of genus 2 as we let p increase.

The algorithm proceeds exactly as described in Section 5.3. Difficulties arise
because the structure of N∗(A) is more complex than in the indecomposable case,
and because we handle that additional structure by brute force. This gives rise to
the rather less elegant complexity statement in Theorem 6.1. We now discuss all of
the subtleties that arise in moving from indecomposable bimaps to general bimaps,
and indicate how we handle them.

The first subtlety occurs, in fact, prior to the main algorithm. Recall, we have
assumed that the indecomposable summands are all sloped. Our presentation of
the adjoint-tensor method presumes that the given bimaps are sloped “globally”.
This is the importance of Lemma 6.4: if this happens not to be the case, then q is
small relative to d and we use Section 6.2 instead.

The crucial point suggested above is that, unlike the approach in Section 6.2,
we treat the input bimaps globally (rather than working with indecomposable sum-
mands). The adjoint algebras A(◦) and A(•) are still centralizers of single matrices,
and hence the conjugacy problem in Section 5.3.1 goes through unchanged.

Moving on to the tensor product T = Fdq ∧A Fdq , once again there is little new;
Theorem 3.18 (as noted in Remark 3.20) applies in this more general setting. That
is, if σ = Φ2Φ−1

1 is a slope of ◦, and m(x) its minimal polynomial, then T ∼= K =
Fq[x]/(m(x)) as Fq-modules. The only difference is that now K may have multiple
primary components (it’s not usually local) but we can compute independently
within each primary component.
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We turn now to the structure of ΨIsom(∧A) = N∗(A). We refer, once again, to
the general structure theorem in [BW2, Theorem 4.5].

First, note that it’s possible to have a subgroup of permutation matrices inside
N∗(A) arising from the representation of A. More precisely, N∗(A) permutes the
isoptypic components of the decomposition of K into primary components. Recall
that primary components Vi (i = 1, 2) are isotypic if they have minimal polynomial
pni , pi irreducible, with deg p1 = deg p2, and where the Vi have identical Jordan
block structures. We denote this permutation subgroup of N∗(A) by Π. It is
possible, provided q > d

2 , for |Π| to be as large as
(
d
2

)
!.

Secondly, K/J(K) is a product of fields (as opposed to a single field). Therefore,
the subgroup Γ of ΓL(1,K), which was previously a single Galois group, may contain

a direct product of Galois groups. Hence, |Γ| may be as large as 2
d
4 .

We now turn to the final step of the algorithm in Section 5.3.3. We proceed
exactly as before, but instead of looping over Γ, we now loop over ΓΠ. Observe
that both |Γ| and |Π| are bounded under the additional hypotheses of the last
assertion in Theorem 6.1, which is what yields polynomial time in that case.

6.4. The group of pseudo-isometries of a bimap of genus 2. Recall that
our test for pseudo-isometry between given bimaps ◦, • : Fdq × Fdq � F2

q promises
the set of all such pseudo-isometries (if such is needed). It does so by additionally
returning generators for the group ΨIsom(◦).

Recall, in view of Theorem 4.1, we consider just Fq-linear pseudo-isometries.

PseudoIsometryGroup ( ◦ )

Given: an alternating Fq-bimap ◦ : Fdq × Fdq � Feq.
Return: (generators for) the group ΨIsom(◦).

Again, we focus on genus 2, and consider first the situation where q is considered
small, as in Section 6.2. Here, there is very little to be said. We proceed – as though
testing for pseudo-isometry between ◦ and itself – by listing all ϕ̂ ∈ GL(2,Fq) and
testing whether ϕ̂ lifts to a pseudo-isometry (ϕ, ϕ̂) of ◦. When we have exhausted
the elements of GL(2,Fq) we have the entire group ΨIsom(◦).

Next, suppose that q is large. Any Fq-linear pseudo-isometry of ◦ preserves a
basic decomposition of ◦ into its flat and sloped parts. We saw in Proposition 5.3
that the pseudo-isometry group of the flat part induces the full GL(2,Fq) on F2

q,
and this result is constructive in that it provides a lift of any given ϕ̂ ∈ GL(2,Fq)
to a pseudo-isometry of the flat part. Thus, in view of Section 6.1, it suffices to
construct ΨIsom(◦) when ◦ : Fdq × Fdq � F2

q is sloped.
This, in fact, is somewhat easier than deciding pseudo-isometry because we

need not concern ourselves with conjugating adjoint algebras. In fact, referring
to the pseudo-code in Section 4, everything remains the same in an algorithm
for PseudoIsometryGroup until Line 5. Here, instead of seeking a single ele-
ment (ϕ, ϕ̂) ∈ ΨIsom(∧A) mapping ker ◦̂ to ker ?̂, we require the full stabilizer in
ΨIsom(∧A) of ker ◦̂, say. One solves such “stabilizer” problems using exactly the
same machinery we used for the “transporter” problems at no additional cost.

In sum, we have proved the following.

Theorem 6.5. There is a deterministic algorithm that, given an alternating Fq-
bimap ◦ : Fdq × Fdq � F2

q of genus 2, constructs generators for ΨIsom(◦). The
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algorithm is polynomial time if either q is bounded, or if the number of pairwise
pseudo-isometric indecomposable summands of the input bimaps is bounded.

7. Proof of Theorem 1.1

In fact we prove a stronger version of our main Theorem 1.1, which includes
groups that are direct products of groups of genus at most 2.

Part (a). First we must recognize when a group G is a direct product of groups
of genus 2 (possibly for multiple fields and characteristics). The algorithms of
[W4, Section 5] may be used to write G = G1 × · · · × Gs with each Gi directly
indecomposable. Hence, by the Krull-Remak-Schmidt theorem, we may assume G1

and G2 are directly indecomposable groups.
Recall from Section 2.3 that we assume our computational model allows us to

decide if a group G is a p-group of class 2 and, if so, to construct its associated bimap
◦G : V × V �W . Recall, also, that the centroid C(◦) can be computed by solving
a system of linear equations. Using [BO, Section 2.2], compute a Wedderburn
decomposition C(◦) = K ⊕ J(C(◦)). As the centroid of a directly indecomposable
p-group of class 2 is local, it follows that K is a field. Since C(◦) is commutative,
K is unique, and the K-dimension of W is well-defined. Deciding whether G has
genus at most 2 is now a simple check whether dimKW 6 2.

Part (b.1). Suppose we are given directly indecomposable groups G1 and G2 of
genus at most 2 over fields Ki; we must determine the set of isoclinisms G1 → G2.
Note, the set is empty if the Gi have different genera, or if K1 6∼= K2 (which can be
decided using [BW1, Lemma 3.5]). By fixing coordinates we may assume the bimaps
of commutation are represented on common vectors spaces: we have alternating,
fully-nondegenerate bimaps ◦1, ◦2 : Fdq × Fdq � Feq for some 1 6 e 6 2.

Now, if e = 1, then the ◦i are alternating nondegenerate forms over a local
ring, and have a symplectic basis that is unique up to pseudo-isometry (see, for
example, [MH, Chapter I, Corollary 3.5]). Using a Gram-Schmidt process (see
[W3], for example) construct a pseudo-isometry (ϕ, ϕ̂) : ◦1 → ◦2. The group of
pseudo-isometries of ◦i is ΓSp(d,Fq), and standard generators for these groups are
well known. Return the set of isoclinisms ◦1 → ◦2 as the coset ΓSp(d,Fq)(ϕ, ϕ̂).

Otherwise, e = 2. Here, we use our algorithms for Theorems 4.1 and 6.1 to find
a pseudo-isometry (ϕ, ϕ̂) : ◦1 → ◦2 if one exists. If none exist, return the empty
set. Else, construct generators for ΨIsom(◦1) using Theorem 6.5 and extend to
semilinear pseudo-isometries using Theorem 4.1. Return ΨIsom(◦1)(ϕ, ϕ̂).

That the coset of pseudo-isometries ◦1 → ◦2 corresponds to the coset of iso-
clinisms G1 → G2 follows from Theorem 2.1 (Baer Correspondence).

Part (b.2). To complete the proof of Theorem 1.1, we must upgrade isoclinism to
isomorphism in the cases when the input groups have exponent p > 2. Note, first,
that we can recognize when a given p-group, G, has exponent p by computing a
matrix, P , representing the linear map xZ(G) 7→ xp: then G has exponent p if, and
only if, P = 0.

Given an isoclinism (ϕ, ϕ̂), there is an induced isomorphism Φ : G1 → G2; for
explicit construction see [W1, Proposition 3.10]. It remains to compute generators
for the full automorphism group of G1 and return Aut(G1)Φ. Note, Aut(G1) ∼=
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HomFq
(Fdq ,F2

q) o ΨIsom(◦1) where, for (ϕ, ϕ̂) ∈ ΨIsom(◦1) and µ ∈ HomFq
(Fdq ,F2

q),

µ(ϕ,ϕ̂) = ϕ−1µϕ̂.

The representation of (µ, (ϕ, ϕ̂)) on G is given in the same manner as [W1, Propo-
sition 3.10(ii)].

Complexity. The k-linear pseudo-isometry problem dominates the complexity of the
procedure, and this is estimated in Theorem 6.1. It remains to cast this estimate
in terms of the input groups, where |G′i| = F2

q. First, the Pfaffian test, which runs

deterministically in time O(q3 log q + d2ω log q), translates as O(|G′i|3/2 log |G′i| +
(log |Gi|)2ω)). For the adjoint-tensor estimate in Theorem 6.1, observe that t – an
upper bound on the number of pairwise non-pseudo-isometric orthogonal factors of
the given bimaps – translates to a bound on the number of pairwise nonisomorphic
central factors of the given groups. The corresponding complexity in that case is
O(t! + (log |Gi|)2ω), and the proof of Theorem 1.1 is now complete. �

8. Implementation and Performance

As mentioned in Section 1.1, we have implemented the algorithms presented
in Sections 4–7 in the computer algebra system magma. Our implementation,
which is available upon request, makes essential use of the StarAlgebra package
implemented by the first and third authors [BW4]. Although there are areas where
performance can be improved, the plots in Figures 1.1 and 6.1 illustrate the efficacy
of our implementation. All tests were carried out on an Intel R© Xeon R© E5-1620,
3.60 GHz microprocessor, running magma V2.21-11.

We now comment on the results depicted in Figure 1.1 (henceforth referred to
as Experiment A), and on further experiments designed to probe the behavior of
the implementation in different circumstances.

Experiment A. We constructed random pairs of groups of genus 2 as follows. For
fixed d we generated a pair {Φ1,Φ2} of skew-symmetric d× d matrices with entries
in F5. Next, we built a 5-group, G, of genus 2 as a PC-group with commutator rela-
tions determined by the entries of {Φ1,Φ2}. We then chose random g ∈ GL(d,F5)
and h ∈ GL(2,F5), computed {Ψ1,Ψ2} = {gΦ1g

tr, gΦ2g
tr}h, and used these ma-

trices to define another PC-group, H which, by construction, is isomorphic to G.
Finally, we used our implementation to test for isomorphism between G and H.
The test was repeated 10 times for each even d between 4 and 254, and 3 times
for each odd d between 3 and 199, for a total 1557 tests. For 16 groups it took
longer than 70 minutes to construct an isomorphism; the most extreme example
was a centrally indecomposable group of order 5256 which took a little over two
hours. By construction, all groups constructed for odd d were flat and for even d
were sloped.

We have shown that, for bounded primes, the asymptotic complexity of our
algorithms is O(d2ω), which matches the complexity of solving systems of linear
equations in (1 + o(1))d2 equations and variables – we refer to this as “d2 lin-
ear algebra”. To see this behavior in our implementation we looked at the ratio
log t∼=(d, p)/ log tLA(d, p), where t∼=(d, p) is the time to test isomorphism of p-groups
of genus 2 and order pd+2, and tLA(d, p) is the corresponding time to solve a ran-
dom linear system of (1 + o(1))d2 equations in (1 + o(1))d2 variables over a field
of size p (in particular we varied the number of variables compared to equations to
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sample between situations that are both under- and over-determined). The results
are reported in Figure 8.1 and they demonstrate that the performance of our imple-
mentation is aligned with theory. Evidently, when applied to sloped instances, the
complexity converges more rapidly to that of d2 linear algebra than it does when
applied to flat instances, but Figure 8.1 shows that both cases are trending in the
right direction.
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Figure 8.1. Graph showing the ratio of the logarithm of our run-
times against the logarithm of the time needed to solve (1+o(1))d2

linear systems as d = logp |G| − 2 increases.

The variance in runtimes in Figure 1.1 for the sloped case (in contrast to the
smooth graph for the flat groups) is due to the construction and manipulation of the
adjoint algebra. In the case of a sloped group, G, one constructs A(◦G) very quickly
using the methods of [BW3]. For these groups, the completion time is affected if
the Jacobson radical of A(◦G) is nontrivial, or if the natural module for A(◦G)
decomposes into many blocks. Information about the number of blocks and sizes of
the largest blocks for the groups in our experiment are given in Figures 8.2 and 8.3,
respectively. As one can see, for sloped groups there is considerable variability in the
block structure. With flat groups, on the other hand, there is usually just a single
indecomposable block, and the runtime is always dominated by the construction of
the adjoint algebra. This accounts for the relatively smooth graph for flat groups
and the spiky graph for sloped groups.

Experiment B. We conducted an experiment to examine the behavior of our
implementation when given pairs of input groups that are unlikely to be isomorphic.
We fixed p = 1021, selected random even integers, d, between 20 and 40 and, as in
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Figure 8.2. Bar graph showing the number of indecomposable
summands of A(◦G) for each group G in Experiment A.

Experiment A, built p-groups, G, of genus 2 with d = logp |G| − 2 from a random
pair of alternating forms. For each G we then constructed a group H from an
independent pair of alternating forms of the same degree d. Unsurprisingly, none
of the pairs of groups in our experiment were isomorphic and our implementation
quickly determined this by finding that the adjoint algebras A(◦G) and A(◦H) were
non-conjugate.

Experiment C. The lesson we learn from Experiment B is that non-isomorphic
groups of genus 2 are usually distinguished by our methods at an early stage. To
probe deeper into our algorithm, we conducted a further experiment to produce
pairs of groups that are probably non-isomorphic, but which are guaranteed to
have conjugate adjoint algebras.

In Experiment C, we again started by constructing a sloped p-group, G, of genus
2 from a random pair of alternating forms. Next, we computed A = A(◦G), formed
the tensor product Zp⊗A Zp, and produced further sloped pairs of forms by taking
random 2-dimensional projections of this tensor product. If H is the group built
from such a pair of forms, then A ⊆ A(◦H) and, with high probability, A = A(◦H).
Thus, we can generate a stream of groups of genus 2 with fixed adjoint algebras,
but having sufficient random variations for testing purposes.

For each d ∈ {2m : 3 6 m 6 9} we created three pairs of groups of order
3d+2 and genus 2 (21 pairs of groups in total). For each pair we used the adjoint-
tensor method to decide if the groups were isomorphic or non-isomorphic. The test
reported that 6 of the 21 pairs were isomorphic groups and the remaining 15 pairs
were non-isomorphic.
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Figure 8.3. Graph showing for each group G in Experiment A
the dimension of the largest indecomposable summand for A(◦G).

Verification. As in Theorem 1.1, if our implementation is handed isomorphic
groups G and H, the expected affirmative output is accompanied by an explicit
isomorphism ϕ : G → H. Hence, we have a built-in verification procedure in the
isomorphic case. If our implementation is given non-isomorphic groups, on the
other hand, the output is simply a boolean confirming that they are not isomorphic
without indicating why. While we can turn on simple reporting features that give
information such as “adjoint algebras are not conjugate,” if we are forced deeper
into the algorithm, non-isomorphism is often decided for reasons that are difficult
to cast in structural terms. We therefore took the opportunity with the 15 non-
isomorphic pairs of groups in Experiment C to seek independent verification using
existing magma functions.

For a fixed (allegedly non-isomorphic) pair, we computed the sets of centralizers
of all non-central elements in each group, and compared the resulting multisets of
subgroups. (We remark that for some pairs this verification took over an hour to
complete, in contrast to the seconds taken initially by the adjoint-tensor method to
decide non-isomorphism.) This process successfully distinguished 6 of the 15 non-
isomorphism claims, but not the other 9 cases. Further testing of the 9 remaining
cases was impossible: the group orders were beyond the practical limitations of the
default methods in magma, which are based largely on the strategies of [ELGO].

We were not surprised by our inability to use existing tools to distinguish these
9 remaining non-isomorphic pairs. In [LW] a similar construction is used to exhibit
an exponentially growing family of pairwise non-isomorphic groups having identical
character tables, multisets of centralizers, and a host of other typically decisive
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isomorphism invariants. Indeed, it is for such families of seemingly indistinguishable
groups that algorithms such as the ones reported here are especially valuable.

9. Closing Remarks

Counting. Earlier work confirms that the number of groups of genus 2 grows
sufficiently that a classification would be unreasonable [B3, V1, V2]. We can use
our methods to prove an exponential bound on the number of these groups.

Proposition 9.1. The number of pairwise non-isoclinic groups of order pn that
have genus 2 over a field is pn/2+Θ(1).

Proof. We have seen that a group of genus 2 over a field Fq is determined, up to
isoclinism, by a pair {Φ1,Φ2} of alternating forms on Fmq . (For a group of order
pn and genus 2, n = (2m + 2) logp q.) Furthermore, these forms can be written
uniquely as an orthogonal sum sloped and flat components. Let m = s + f where
s is the dimension of the sloped factor.

To estimate the number of possibilities for the flat part we need only consider
the dimensions of the flat indecomposable constituents, forming a partition of the
total dimension, f . Furthermore, if {Φ1,Φ2} is a flat indecomposable pair of forms
on Feq, then e > 3 is odd. Hence, the number of flat indecomposables is at most
the number of decompositions f =

∑
i 2mi + 1. This is bounded by the number of

partitions of f/2, and so is not more than 2f/2.
We now estimate the possibilities for the sloped portion. We may assume

Ψ1 =

[
0 Is/2
−Is/2 0

]
and Ψ2 =

[
0 J
−J tr 0

]
,

where J is in generalized Jordan normal form. By a classical result of Frobenius and
Hall, the number of Jordan forms (also the number of conjugacy classes in Ms/2(q))

is qs/2+o(1). By Theorem 3.22 two sloped pairs determine isomorphic groups if, and
only if, they are equivalent under the action of ΓL(2,Fq). Hence, the total number

of pairwise nonisomorphic sloped components is between qs/2−4 and qs/2.
The total number of pairwise nonisomorphic groups of genus 2 and order pn is

maximized when Fq = Zp and f ∈ O(1), resulting in the stated estimate. �

We turn next to the degrees of permutation representations having groups of
genus 2 as a quotient. This confirms that large groups may be handed to our
algorithms for Theorem 1.1 and yet there is a completely deterministic polynomial
time solution.

Proposition 9.2. Let G be a p-group of genus 2 over a field Fq with fully-refined
central decomposition {G1, · · · , G`}. Then G has a faithful representation as a
quotient of a permutation group of degree

deg(G) 6
∑̀
i=1

deg(Gi), deg(Gi) 6

{
q2ci deg ai(x), H(Fq[x]/(ai(x)ci))� Gi;
q2m+2, Gi ∼= H[

m(q).

Furthermore, |G| = q2s
∏`
i=1 deg(Gi), where s is the number of Gi that are sloped.

Proof. If H = H(K), K a commutative ring, then the stabilizer of (1, s, t) in H is
1 0 fs

0 1 f
0 0 1

 : f ∈ K

 .
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Hence, the stabilizers of (1, 0, 0) and (1, 1, 0) intersect trivially, so the permutation
representation of H on {(1, s, t) : s, t ∈ K} is faithful and transitive of degree 2|K|.
It follows, for each 1 6 i 6 `, that

deg(H(Fq[x]/(ai(x)ci))) 6 q2ci deg ai(x).

A similar estimate holds for flat indecomposables, but the representation is regular.
Since central products are quotients of direct products the claim follows. �

Groups of higher genus. As suggested in Section 4, the adjoint-tensor method is
designed to work in much greater generality than genus 2. In [LW], for example, a
version of the algorithm handles isomorphism of all quotients of Heisenberg groups
over fields in time O((log |G|)6). What prevents us from saying more is that one
cannot predict the complexity of group isomorphism for a class of groups by the
adjoint-tensor method without a priori knowledge of the associated adjoint rings.
In the case of quotients of Heisenberg groups Hm(K), K a local Artinian ring,
the adjoint rings are generically the same as the adjoint ring of Hm(K), which is
none other than M2m(K). (This follows from a Galois correspondence explained in
[BW2]). So long as this ring is manageable then some variation of our analysis still
applies.
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