
TENSOR ISOMORPHISM BY CONJUGACY OF LIE ALGEBRAS

PETER A. BROOKSBANK, JOSHUA MAGLIONE, AND JAMES B. WILSON

Abstract. We introduce an algorithm to decide isomorphism between ten-

sors. The algorithm uses the Lie algebra of derivations of a tensor to compress

the space in which the search takes place to a so-called densor space. To
make the method practicable we give a polynomial-time algorithm to solve a

generalization of module isomorphism for a common class of Lie modules. As

a consequence, we show that isomorphism testing is in polynomial time for
tensors whose derivation algebras are classical Lie algebras and whose densor

spaces are 1-dimensional. The method has been implemented in the Magma

computer algebra system.

1. Introduction

Techniques to decide isomorphism for algebraic structures such as groups, alge-
bras, and modules often involve testing whether two multilinear maps (tensors) are
equal under basis changes. Examples include isomorphisms tests for finite p-groups
that work through the factors of the exponent p-central series [13, 28], and others
that use more general filtrations [27, 31]. A recent rethinking of these approaches
led to an isomorphism test for graded algebras that identifies an optimal route
through the filtration [8]. In all of these techniques, the initial task is to decide iso-
morphism between tensors. This paper introduces a new algorithm to solve tensor
isomorphism by exploiting the action of the Lie algebra of derivations on the vector
space of tensors. The algorithm is particularly well suited to isomorphism problems
for highly symmetric structures, such as those found in [1, 15, 16]. We note that
methods for generic tensors, algebras, and groups can be found in [3, 13,25].

1.1. Tensor isomorphism. Fix a field K and finite-dimensional K-vector spaces
V1, . . . , Vℓ. A tensor is an element, t, of (V1 ⊗ · · · ⊗ Vℓ)

∗ = homK(V1 ⊗ · · · ⊗ Vℓ,K),
and the integer ℓ ⩾ 2 is its valence. We interpret t as a multilinear function
⟨t| : V1 × · · · × Vℓ ↣ K (↣ to denote multilinear) that may be evaluated on inputs
v = (v1, . . . , vℓ) ∈ V1 × · · · × Vℓ using a Dirac styled “bra-ket” notation as follows:

⟨t|v⟩ = ⟨t|v1, . . . , vℓ⟩ ∈ K.

A tensor is also determined by its coordinates relative to bases {ea1, . . . , eada
} for

each Va. That is, for a ∈ [ℓ] = {1, . . . , ℓ} and ia ∈ [da], one specifies the scalar

Ti1···iℓ = ⟨t|e1i1 , . . . , eℓiℓ⟩ ∈ K.(1.1)

Date: April 19, 2022.

Key words and phrases. tensor isomorphism, derivation algebra, Lie algebra.
This work was partially supported by Deutsche Forschungsgemeinschaft grant VO 1248/4-1

project number 373111162, National Science Foundation grants DMS-1620362, DMS-1620454, and
The Simons Foundation Grant #636189.

1

2 PETER A. BROOKSBANK, JOSHUA MAGLIONE, AND JAMES B. WILSON

As in elementary linear algebra, one can pass back and forth between the “hyper-
matrix” [Ti]i∈[d1]×···×[dℓ] ∈ Kd1×···×dℓ and the associated multilinear map ⟨t|.

For ω = (ω1, . . . , ωℓ) ∈ GL(V1) × · · · × GL(Vℓ) and t ∈ (V1 ⊗ · · · ⊗ Vℓ)
∗, define

tω ∈ (V1 ⊗ · · · ⊗ Vℓ)
∗ as follows:

⟨tω|v⟩ = ⟨t|ωv⟩ = ⟨t|ω1v1, . . . , ωℓvℓ⟩.
Tensors s and t are isomorphic if sω = t for some ω ∈ GL(V1) × · · · × GL(Vℓ).
Expressed in terms of hypermatrices, this is a natural extension of equivalence
of matrices up to row and column operations. In a recent paper, Grochow and
Qiao prove that the problem of deciding whether two tensors are isomorphic has
connections with many familiar and difficult decision problems, such as the graph
and group isomorphism problems [18].

Throughout the paper ‘algorithm’ will mean Las Vegas algorithm, which always
returns the correct answer but may, with bounded probability, abort without an
answer. We adopt an arithmetic model of computation, wherein all field operations
in K have unit cost and are precise (no rounding). When K is infinite, we assume
the existence of oracles to factor elements from Z and from Q[x]. Note that the
product · : A×A↣ A of a K-algebra can be treated as a tensor in (A⊗A⊗A∗)∗.
Hence, we assume tensors and algebras are both given by fixing bases for all vector
spaces involved, and specifying the scalars in (1.1). (In the algebra context it is
common to refer to the scalars as structure constants.)

1.2. The derivation-densor method. Write gl(V) for the Lie algebra on End(V)
with Lie bracket given by the matrix commutator. The derivation algebra of a tensor
t ∈ (V1 ⊗ · · · ⊗ Vℓ)

∗ is the Lie algebra

Der(t) =

{
δ ∈

ℓ⊕
a=1

gl(Va)

∣∣∣∣∣ ∀a ∈ [ℓ], ∀va ∈ Va,
⟨t|δ1v1, . . . , vℓ⟩+ · · ·+ ⟨t|v1, . . . , δℓvℓ⟩ = 0

}
.

Next we use a generalization of the standard Whitney tensor products called the
densor spaces (short for derivation tensor spaces) as introduced in [14]. Start with
∆ ⊂ gl(V1)× · · · × gl(Vℓ) and define

IV1, . . . , VℓJ∆ = {s ∈ (V1 ⊗ · · · ⊗ Vℓ)
∗ | ∆ ⊆ Der(s)} .

The notation IV1, . . . , VℓJ∆ perhaps requires some explanation. Consider the case
ℓ = 2, and let δ 7→ δ† be a ring anti-isomorphism End(V1) → End(V1)

op. If

∆̂ = {(−δ†1, δ2) | (δ1, δ2) ∈ ∆} ⊂ End(V1)
op × End(V2), then

(V1 ⊗∆̂ V2)
∗ = {t ∈ (V1 ⊗ V2)

∗ | ⟨t|v1(−δ†1), v2⟩ = ⟨t|v1, δ2v2⟩}
= {t ∈ (V1 ⊗ V2)

∗ | ⟨t|δ1v1, v2⟩+ ⟨t|v1, δ2v2⟩ = 0} = IV1, V2J∆.

Thus, densor spaces are multivalent generalizations of ⊗. The notation of IJ is
conceived as backward and forward letters D—for derivation—but stylized to evoke
the connection to the symbol ⊗. We abbreviate IV1, . . . , VℓJDer(t) to ItJ.

Our algorithm for tensor isomorphism uses Der(t) and ItJ together with the
subgroup of GL(V1)× · · · ×GL(Vℓ) that normalizes Der(t), namely

N(Der(t)) =

{
ω ∈

ℓ∏
a=1

GL(Va)

∣∣∣∣∣ ∀δ ∈ Der(t), (ω−1
1 δ1ω1, . . . , ω

−1
ℓ δℓωℓ) ∈ Der(t)

}
.

Algorithm 1 gives a high level description of the isomorphism test, which we call
the derivation-densor method.

TENSOR ISOMORPHISM BY CONJUGACY OF LIE ALGEBRAS 3

Algorithm 1 (Derivation–Densor)

Input: Tensors s, t ∈ (V1 ⊗ · · · ⊗ Vℓ)
∗.

Output: ω ∈ G := GL(V1)× · · · ×GL(Vℓ) with s
ω = t, if such exists.

1: Compute Der(s) and Der(t).
2: if (∃µ ∈ G)(Der(s)µ = Der(t)) then
3: Build the densor space ItJ.
4: Compute the action of N(Der(t)) on ItJ.
5: if (∃ν ∈ N(Der(t)))(sµν = t) then return ω := µν.
6: else Report s ̸∼= t.

7: else Report s ̸∼= t.

Lines 1 and 3 are carried out by solving systems of linear equations. The practi-
cability of the method depends critically on the related problems in Lines 2, 4 and
5. These problems are known to be difficult in general, but if we have sufficient
control of Der(t) and its representation in gl(V1)× · · · × gl(Vℓ), then we can carry
out these tasks directly in polynomial time (cf. Theorem 1.4).

We note that existing methods [5, 6, 10, 24, 32] employ similar strategies, but
instead of Lie algebras of derivations they used associative algebras Ai of so-called
adjoints, and instead of the densor space they compress the search space using more
traditional tensors of the form (V1 ⊗A1 · · · ⊗Aℓ−1

Vℓ)
∗. The associative approach

became known as the adjoint-tensor method; details are given in Section 2.
The use of Lie algebras has a distinctive advantage over adjoint-tensor methods.

Simple modules of associative algebras have fixed dimensions; for example, K2 is
the only simple module of M2(K). Thus, if the adjoint algebras Ai have bounded

dimensions, then dim(V1 ⊗A1
· · · ⊗Aℓ−1

Vℓ)
∗ is proportional to

∏ℓ
i=1 dimVi. As ItJ

is a Lie module, its dimension is governed by quantities such as the Littlewood–
Richardson coefficients. Even Lie algebras of bounded dimension, such as sl2(K),
can have simple modules of arbitrary dimensions, which means that dimItJ can be
surprisingly small. Indeed, there are infinite families of tensors t with dimItJ = 1
such that, if Ai are associative algebras satisfying t ∈ (V1 ⊗A1

· · · ⊗Aℓ−1
Vℓ)

∗, then

dim(V1 ⊗A1
· · · ⊗Aℓ−1

Vℓ)
∗ =

∏ℓ
i=1 dimVi (cf. Theorem 4.6 and Remark 5.1).

As noted above, the performance of derivation-densor depends, for certain inputs,
on difficulties faced in lines 2 and 4. It is often line 5, however, that presents
the most serious challenges. Here, we search through the cosets of the centralizer
C(Der(t)) = {ω ∈ N(Der(t)) | δ ∈ Der(t), δω = δ} in N(Der(t)). Although efficient
module-theoretic techniques can often be used to refine this search, for many tensors
t the derivation algebra Der(t) = {(−α1, . . . ,−αℓ−1, α1 + · · · + αℓ) | αa ∈ K} is
as small as it can possibly be, which in turn means N(Der(t))/C(Der(t)) can be
as large as PGL(V1) × · · · × PGL(Vℓ). Broadly speaking, derivation-densor works
best when the given tensors possess enough global symmetry to be detectable by
their derivation algebras, and such settings are indeed the focus of this paper.
However, since setting it up involves only linear algebra, derivation-densor serves
as an efficient first reduction for many isomorphism problems.

1.3. Using the derivation-densor method. The key problems in Lines 2 and
4 of Algorithm 1 reduce to a variation of the module isomorphism problem for
(non-associative) algebras. Write AV to indicate that V is a left A-module. We say

4 PETER A. BROOKSBANK, JOSHUA MAGLIONE, AND JAMES B. WILSON

modules A1
V1 and A2

V2 are pseudo-isomorphic if there is an algebra isomorphism
ψ : A1 → A2 and a K-linear isomorphism Ψ: V1 → V2 such that

(∀x1 ∈ A1)(∀v1 ∈ V1) Ψ(x1v1) = ψ(x1)Ψ(v1).(1.2)

When A = A1 = A2 and ψ = 1 this is the usual notion of A-module isomorphism.
In that case, a polynomial-time algorithm of the first author and Luks [4] may be
used to build Ψ from units in the associative algebra HomL(V1, V2)HomL(V2, V1) ⊂
EndL(V1). When ψ is allowed to vary, however, the problem becomes much more
difficult. Indeed, Grochow has shown that deciding Lie module pseudo-isomorph-
ism is at least as hard as deciding graph isomorphism [17]. There are, however,
polynomial-time solutions for special classes, such as modules of simple and cyclic
associative algebras [11], and simple modules of simple Lie algebras over C [17]. The
following theorem, which we consider to be of independent interest, supplements
those results (a Lie algebra L has Chevalley type if [L,L] has a Chevalley basis).

Theorem 1.3. Let K be a field with either K = 6K finite or K/Q finite. There
is a polynomial-time algorithm that decides pseudo-isomorphism of faithful simple
finite-dimensional Lie modules over Lie algebras of Chevalley type.

A tensor t ∈ (V1 ⊗ · · · ⊗ Vℓ)
∗ is degenerate if there exists 0 ̸= va ∈ Va such

that, for all b ̸= a and all vb ∈ Vb, ⟨t|v1, . . . , vℓ⟩ = 0. It is elementary to reduce
the isomorphism problem for arbitrary tensors to the nondegenerate case. The
polynomial-time algorithm in Theorem 1.3 is vital to the proof of the next theorem.

Theorem 1.4. Let K be a field with either K = 6K finite or K/Q finite, let

V1, . . . , Vℓ be finite-dimensional K-spaces, and let d =
∑ℓ

a=1 dimK Va. For nonde-
generate s, t ∈ (V1 ⊗ · · · ⊗ Vℓ)

∗ with Der(s) of Chevalley type and dimIsJ = 1, one
can decide using dO(1) steps whether s ∼= t.

The tensors t for which dimItJ = 1 are interesting special cases in their own
right, and they are more common than one might suspect. In Section 4 we construct
an infinite family of tensors, arising naturally from the representation theory of
classical Lie algebras, whose densor space is 1-dimensional.

2. Algebraic tensor compression

The use of rings to decrease the dimension of the search spaces in tensor isomor-
phism is not new, but it has heretofore been developed only for associative rings.
In this section we briefly describe the history of algebraic tensor compression, and
how it led to the derivation-densor method.

2.1. The adjoint-tensor method. The first tensor compression method was in-
troduced in [24] for the case ℓ = 2, and soon after generalized in [6, 10, 32]. Given
a bilinear map (bimap) ⟨t| : V1 × V2 ↣ V0, its adjoint algebra is

Adj(t) = {α ∈ End(V1)× End(V2)
op | ⟨t|α2v2, v1⟩ = ⟨t|v2, v1α1⟩},

and its associated tensor space is V1 ⊗Adj(t) V2. Observe that ⟨t| naturally factors
through the bimap ⊗Adj(t) : V1 × V2 ↣ V1 ⊗Adj(t) V2.

The adjoint-tensor method solves the isomorphism problem between bimaps s
and t by first deciding if there exists µ conjugating Adj(s) to Adj(t), which is done
by the methods of [9,22]. Then we carry out a search within the compressed space

TENSOR ISOMORPHISM BY CONJUGACY OF LIE ALGEBRAS 5

Hom(V1 ⊗Adj(t) V2, V0)—in which both sµ and t now reside—under the action of

the potentially much smaller group normalizing Adj(t), modulo Adj(t)×.
This process is captured concisely as follows:

(∃φ)(sφ = t) ⇐⇒ (∃µ)(∃ν)

 Adj(s)µ := µ−1 Adj(s)µ = Adj(t),
Adj(t)ν = Adj(t), and
(sµ)ν = t ∈ Hom(V1 ⊗Adj(t) V2, V0).

The method distinguishes V0 due to its role as the codomain. One could, however,
just as easily consider s, t as tensors in (V1 ⊗ V2 ⊗ V ∗

0)
∗. With this interpretation

the compressed tensor space is (V1 ⊗Adj(t) V2 ⊗ V ∗
0)

∗, which now seems like an
arbitrary choice. To reconcile the apparent asymmetry, the third author introduced
a generalization involving operations between all pairs of Va and Vb [32]. The
guiding principle of the derivation-densor algorithm is to move away from binary
tensor products entirely.

2.2. A broader view. Using an emerging theory of transverse operators on tensor
spaces, one can generalize the adjoint-tensor method in many different ways. The
theory, which is based on a ternary Galois correspondence, is developed in detail
in the forthcoming work [14]; we describe and prove here only what is needed for
our isomorphism test.

Given t ∈ T := (V1 ⊗ · · · ⊗ Vℓ)
∗, f(X) =

∑
e λeX

e an element of the polynomial
ring K[X] := K[x1, . . . , xℓ], and ω ∈ Ω := End(V1) × · · · × End(Vℓ), define a new
multilinear form ⟨t|f(ω) as follows:

⟨t|f(ω)|v⟩ =
∑
e

λe⟨t|ωe1
1 v1, . . . , ω

eℓ
ℓ vℓ⟩.

Given S ⊂ T , P ⊂ K[X], and Υ ⊂ Ω, define three sets

N (P,Υ) = {t ∈ T | ∀f ∈ P,∀ω ∈ Υ,∀v, ⟨t|f(ω)|v⟩ = 0},
I (S,Υ) = {f ∈ K[X] | ∀t ∈ S, ∀ω ∈ Υ,∀v, ⟨t|f(ω)|v⟩ = 0},
Z (S, P) = {ω ∈ Ω | ∀t ∈ S, ∀f ∈ P,∀v, ⟨t|f(ω)|v⟩ = 0}.

Then N (P,Υ) is a subspace, I (S,Υ) is an ideal, and Z (S, P) is an algebraic set,
and they satisfy the following Galois correspondence property:

S ⊂ N (P,Υ) ⇐⇒ P ⊂ I (S,Υ) ⇐⇒ Υ ⊂ Z (S, P) .(2.1)

For an algebraic perspective, each ω ∈ Ω defines a representation ρω : K[X] →
End(T), where f 7→ (⟨t| 7→ ⟨t|f(ω)). The sets I (S,Υ) =

⋂
ω∈Υ I (S, ω) are anni-

hilator ideals in K[X], so they are a multilinear generalization of the concept of
minimal polynomials. The sets N (P,Υ) generalize tensor products. For example,
if A ⊆ End(V1) × End(V2)

op is an associative algebra and f(X) = x1 − x2, then
N (x1 − x2, A) is the usual tensor product (V1 ⊗A V2)

∗. For, if t ∈ (V1 ⊗A V2)
∗ and

all (φ1, φ2) ∈ A, then

⟨t|f(φ1, φ2)|v1, v2⟩ = ⟨t|φ1v1, v2⟩ − ⟨t|v1, φ2v2⟩ = 0.

The algebraic sets Z (S, P) may, depending on P , come equipped with algebraic
structure external to their definition. For example,

Adj(S) = Z (S, x1 − x2) Der(S) = Z (S, x1 + · · ·+ xℓ)

are, respectively, associative and Lie algebras.

6 PETER A. BROOKSBANK, JOSHUA MAGLIONE, AND JAMES B. WILSON

The Galois correspondence in (2.1) relating these three constructions has clo-
sures. For example, if d = x1 + · · ·+ xℓ, then

ItJ = N (d,Der(t)) = N (d,Z (t,d)) .

The adjoint-tensor uses a different closure:

(V1 ⊗Adj(t) V2 ⊗ V ∗
0)

∗ = N (x1 − x2,Z (t, x1 − x2)) .

In fact, the following proposition elucidates a tensor compression method for every
ideal in K[X]! Note, Ω× = GL(V1)× · · · ×GL(Vℓ) is the group of units of Ω.

Proposition 2.2. Let s, t ∈ (V1 ⊗ · · · ⊗ Vℓ)
∗ and let P be an ideal of K[X]. Then

there exists φ ∈ Ω× such that sφ = t if, and only if, there exist µ, ν ∈ Ω such that

Z (s, P)
µ
= Z (t, P) ,

Z (t, P)
ν
= Z (t, P) , and

(sµ)ν = t ∈ N (P,Z (t, P)) .

Proof. Suppose φ ∈ Ω× satisfies sφ = t. Fix ω ∈ Z (sφ, P) and f =
∑

e λeX
e ∈ P .

Then, for all va ∈ Va,

0 = ⟨sφ|f(ω)|v1, . . . , vℓ⟩ =
∑
e

λe⟨sφ|ωe1
1 v1, . . . , ω

eℓ
ℓ vℓ⟩

=
∑
e

λe⟨s|φ1ω
e1
1 φ

−1
1 u1, . . . , φℓω

eℓ
ℓ φ

−1
ℓ uℓ⟩,

where ua = φava. It follows that Z (s, P)
φ−1

= Z (sφ, P) = Z (t, P). Now put
µ = φ−1 and ν = 1. The reverse implication is proved similarly. □

2.3. The derivation-densor method. There are many possible ideals, P , one
can consider to seed the mechanism in Proposition 2.2. To narrow the candidate
pool we impose three requirements: (a) Z (t, P) has an algebraic structure like
Adj(t) and Der(t); (b) the choice of P is independent of the given tensor t; and (c)
there is an efficient algorithm to construct Z (t, P).

For several reasons, the ideal P = (d) with d = x1 + · · · + xℓ is the perfect
candidate. First, Der(t) = Z (t, (d)) is the solution space of a system of linear
equations, and hence can be constructed efficiently. Secondly, all associative alge-
bras associated to t, such as Adj(t), embed in Der(t) [5, Theorem A]. Further, for
any ideal P generated by linear homogeneous polynomials, the densor subspace ItJ
embeds in N (P,Z (t, P)) [14, Theorem A]. Thus, in a precise sense, ItJ is the most
compressed space one can use with linear methods.

Since Der(t) = Z (t, (d)) and ItJ = N ((d),Z (t, (d))), the correctness of the
derivation–densor method follows directly from Proposition 2.2 applied to P = (d):

Theorem 2.3. Algorithm 1 decides isomorphism of tensors s, t ∈ (V1 ⊗ · · · ⊗ Vℓ)
∗.

3. Deciding pseudo-isomorphism of simple Lie modules

We turn now to the key steps in Algorithm 1, namely to the related tasks in
Lines 2 and 4. As noted in Section 1.3, it is convenient to translate those tasks into
pseudo-isomorphism problems for modules. The purpose of this section is to solve
the latter module problems for the classes of algebras we consider in this article.
In particular, we will prove Theorem 1.3.

TENSOR ISOMORPHISM BY CONJUGACY OF LIE ALGEBRAS 7

3.1. Three illustrations. In associative and Lie settings, pseudo-isomorphism of
modules is a strictly coarser equivalence than isomorphism. An analysis of the
associative setting is provided in [11]. To elucidate the differences between module
isomorphism and pseudo-isomorphism, and to distinguish the Lie module setting
from its associative counterpart, we briefly describe three computational settings.
Some challenging obstructions are encountered even in these elementary examples.

3.1.1. Irreducible representations of simple algebras. Consider L = sl3(K) acting
in two different ways on K3 as follows: for x ∈ L and v ∈ K3,

[x, v]1 = xv [x, v]2 = x̄v,(3.1)

where x̄ij = x(3−j+1)(3−i+1) is the transpose along the opposite diagonal. Isomor-
phism can be decided using the standard theory of weight spaces, as described in
[21, Chapter VI]. The highest weight space of the first module, LV1, is Vλ = Ke1,
where λ has support h1 = E11 − E22 in the standard Cartan subalgebra. The
highest weight space of the second module, LV2, is the same space but with a dif-
ferent weight, namely Vλ′ = Ke1 where λ′ has support h2 = E22 − E33. Thus,

LV1 and LV2 are non-isomorphic L-modules [21, VI.20.3]. However, Φ := I3 and
φ : x→ x̄ is evidently a pseudo-isomorphism LV1 → LV2, which could be termed a
“graph-twist” because φ induces an automorphism of the Dynkin diagram of L.

J. Grochow observed in his Ph.D. thesis that, when L is a simple Chevalley Lie
algebra, the isomorphism classes of simple L-modules are determined by such graph
automorphisms [17]. In that case, one can exhaust the limited number (⩽ 6) of
Dynkin diagram automorphisms until an appropriate choice for φ : L1 → L2 is found
to reduce the given pseudo-isomorphism problem to an instance of isomorphism
that may be solved by the theory of weight spaces. For this observation to be
practicable, one requires efficient algorithms to recognize that a given Lie algebra
has a Chevalley basis and to construct one if it does. Fortunately, such algorithms
exist [12,26,30], so Theorem 1.3 holds when the given Lie algebras are simple.

These sorts of pseudo-isomorphisms between modules of simple Lie algebras have
no associative analogue: by the Skolem–Noether theorem, every automorphism of
a simple associative algebra is inner.

3.1.2. Completely reducible representations of semisimple algebras. Let L = sld(K)n,
and define two actions on V n = Kdn by

[(x1, . . . , xn), (v1, . . . , vn)]1 = (x1v1, . . . , xnvn)

[(x1, . . . , xn), (v1, . . . , vn)]2 = (xσ(1)v1, . . . , xσ(n)vn).
(3.2)

where σ is a permutation of [n] := {1, . . . , n}. For large values of n it would be
prohibitively expensive to list all permutations as we did with the Dynkin diagram
automorphisms. However, more thoughtful strategies also have their limitations:
Grochow proved that pseudo-isomorphism in this setting is at least as hard as the
Graph Isomorphism problem [17].

There is an analogous situation for associative algebras—where it is equally futile
to list all possible permutations—but an efficient solution exists in this case [11,
Theorem 1.3].

8 PETER A. BROOKSBANK, JOSHUA MAGLIONE, AND JAMES B. WILSON

3.1.3. Irreducible representations of semisimple algebras. For i ∈ [m], let Ei be
a field extension of K. Consider L = sld1(E1) ⊕ · · · ⊕ sldm(Em) acting on V =

Ed1
1 ⊗ · · · ⊗ Edm

ℓ by

[(x1, . . . , xℓ), v1 ⊗ · · · ⊗ vm] = x1v1 ⊗ · · · ⊗ xℓvm,(3.3)

where xi ∈ sldi(Ki), vi ∈ Edi
i . Again, permutations of coordinates threatens to

encode a hard problem as an instance of a pseudo-isomorphism problem of this
type. However, unlike Section 3.1.2, we have a tensor product rather than a direct
sum, so minimal ideals of L do not annihilate subspaces of the module.

This situation is again particular to the nonassociative setting.

3.2. Tensor decompositions of simple Lie modules. The situation described
in Section 3.1.3 illustrates a general phenomenon. If L = M ⊕ N is a Lie algebra
decomposition into ideals, and V is an L-module, then a consequence of the Jacobi
identity is that L =M ⊕N acts on V in the following sense:

(∀m ∈M)(∀n ∈ N)(∀v ∈ V) m(nv) = n(mv).(3.4)

This property enables us to characterize, constructively as iterated tensor products,
the Lie modules arising in Theorem 1.3.

For an idealM of L ⩽ gl(V), letK⟨M⟩ ⩽ End(V) denote its associative envelope,
namely the K-span of the semigroup generated by M ⊆ End(V). For S ⊂ V , put
MS := K⟨M⟩S, the smallest M -submodule of V containing S. The following
elementary result provides the engine for our decomposition algorithm.

Lemma 3.5. Let L = M ⊕ N be a nontrivial decomposition with M a minimal
ideal, and let V be a simple L-module. If S is a proper, simple M -submodule of V ,
then V = S ⊕NS is an M -module decomposition, and S embeds in NS.

Proof. For an M -submodule, S, of V , we have M(NS) = N(MS) ⩽ NS by (3.4),
so NS is an M -submodule. As V is a simple L-module, V = LS = MS + NS ⩽
S +NS. Since S is a proper, simple M -module, S ∩NS = 0 as required. Since S
is not an L-submodule of V , it follows that NS ̸= 0, so there exists n ∈ N with
nS ̸= 0. By (3.4) again, s 7→ ns is an M -module embedding S → NS. □

To ensure linear algebra is done over fields rather than division rings, we intro-
duce an additional condition on minimal ideals M of a Lie algebra L. An ideal M
of L has central type if K⟨M⟩ is isomorphic to Mf (∆) for some integer f and field
∆. We say L has central type if all minimal ideals of L have central type.

Lemma 3.6. If M is a simple Lie algebra of central type and S a simple faithful
M -module, then EndM (S) is a field.

Proof. By Schur’s lemma, ∆ = EndM (S) is a division ring, and by Wedderburn–
Artin, M ∼= End∆(S). Since M is of central type, ∆ is a field. □

Our decomposition algorithm also makes use of idempotents of a matrix algebra
over K. An element e ∈ A ⩽ End(V) is a idempotent if e2 = e. Two idempotents
e, f ∈ A are orthogonal if ef = 0 = fe. Finally, an idempotent e ∈ A is primitive
if e is not the sum of two nonzero orthogonal idempotents.

Theorem 3.7. There is a polynomial-time algorithm that, given a decomposition
L =M⊕N , with M minimal and of central type, and a simple L-module V , returns

TENSOR ISOMORPHISM BY CONJUGACY OF LIE ALGEBRAS 9

an M -submodule S ⩽ V , an N -submodule T ⩽ V , and an L-module isomorphism
V → S ⊗EndM (S) T .

Proof. There are two stages to the algorithm. The first constructs a decomposition
V ∼= S ⊗∆ ∆r for a simple M -submodule S, where ∆ = EndM (S). The second
constructs an N -submodule T ⩽ V and an isomorphism T → ∆r.

We first verify, in polynomial time, that M is minimal by checking that K⟨M⟩
is simple using [29]. Then we apply polynomial-time algorithms from [19, 29] to
test whether V is a simple M -module. If V is simple, set S = V . Otherwise the
algorithms of [19,29] produce a proper, simple M -submodule S ⩽ V .

Initialize V := {S}. While
∑

U∈V U ̸= V , find a generator n ∈ N such that
nS ∩

∑
U∈V U = 0, and put V := V ∪ {nS}. By the proof of Lemma 3.5, S and nS

are isomorphic M -submodules of V , so we obtain an isomorphism α : V → S⊕r of
M -modules. By solving a system of linear equations, we construct generators for
the field ∆ = EndM (S), cf. Lemma 3.6. We use α to write V ∼= S ⊗∆ ∆r. This
completes the first stage of the algorithm.

We begin the second stage by computing generators for A := K⟨M⟩ ⊂ EndK(V).
We next use the recognition algorithm of [23, Theorem 1] to construct a primi-
tive idempotent e ∈ A, and put T := eV . Since e is a primitive idempotent of
A ∼= Mf (∆), there is a natural ring isomorphism eAe → ∆, and a ∆-vector space
isomorphism ∆ → eS. Hence,

S ⊗∆ T ∼= S ⊗∆ (eS ⊗∆ ∆r)

∼= S ⊗∆ (∆⊗∆ ∆r)

∼= S ⊗∆ ∆r ∼= V. □

The relevant mappings in the above isomorphisms are a by-product of the compu-
tation as well.

Corollary 3.8. Let L =M1⊕· · ·⊕Mr be a decomposition into nontrivial minimal
ideals of central type, and let V be a simple L-module. Then V ∼= S1 ⊗ · · · ⊗ Sr,
where Si ⩽ V is a simple Mi-submodule for i ∈ [r]. Furthermore, if L is of central
type and the decomposition of L into ideals is given, then the tensor decomposition
of V can be constructed in polynomial time.

One final ingredient is needed for the proof of Theorem 1.3. For finite fields one
can, in polynomial time, test whether a given (unital) associative algebra is cyclic (a
quotient of a polynomial ring), and decide pseudo-isomorphism of modules for such
algebras [11]. Those algorithms have since been generalized to number fields [23,
pp. 211–212]; the next result follows mutatis mutandis from [11, Theorem 1.3].

Theorem 3.9. Fix a field K that is finite or finite over Q, and a finite-dimensional
vector space V . There is a polynomial-time algorithm to decide if an associative al-
gebra A ⩽ EndK(V) is cyclic and another to settle pseudo-isomorphism for modules
of such algebras.

3.3. Proof of Theorem 1.3. Let L1 and L2 be the given Lie algebra of Chevalley
type represented faithfully on simple modules V1 and V2, respectively. For i = 1, 2,
Li is reductive (it has central nil radical), so it has central type and decomposes
as Li = Mi0 ⊕Mi1 ⊕ · · · ⊕Miri into nontrivial minimal ideals, with Mi0 abelian.
Moreover, such a decomposition can be found using [23, Theorem 1] and the more
general finite field case discussed in [23, pp. 211–212]. We may assume r1 = r2 = r

10 PETER A. BROOKSBANK, JOSHUA MAGLIONE, AND JAMES B. WILSON

since, otherwise, L1 ̸∼= L2. By re-indexing we may further assume, for each k ∈ [r],
that M1k

∼= M2k as Lie algebras by computing Chevalley bases—possibly over
extension fields—and comparing root data. For the abelian ideals M10 and M20,
we simply compare dimensions.

We first handle the abelian ideals. By Schur’s Lemma, K⟨M10⟩ and K⟨M20⟩
are both cyclic algebras. Using Theorem 3.9, we construct ψ0 : K⟨M10⟩ → K⟨M20⟩
and Ψ0 : V1 → V2 such that (Ψ0, ψ0 ⊕ id1 ⊕ · · · ⊕ idr) is a pseudo-isomorphism

K⟨M10⟩V1 → K⟨M20⟩V2.
Next, for each i ∈ [2], apply Corollary 3.8 to construct a tensor decomposition

Vi = Si1 ⊗ · · · ⊗ Sir, where Sij a simple Mij-module for j ∈ [r]. For each j ∈ [r],
use Grochow’s algorithm [17] (discussed in Section 3.1.1) to construct a pseudo-
isomorphism (Ψj , ψj) from M1j

S1j → M2j
S2j . If the latter fails for some j, then

there is no pseudo-isomorphism L1
V1 → L2

V2, so we report that and exit. Oth-
erwise, ((Ψ1 ⊗ · · · ⊗ Ψr) · Ψ0, ψ0 ⊕ ψ1 · · · ⊕ ψr) is the desired pseudo-isomorphism

L1V1 → L2V2. 2

4. Families of densors with prescribed dimensions

In this section, we construct an infinite family of tensors with small densor spaces.
In particular, there is a sub-family whose densor spaces are 1-dimensional. These
tensors come from the classical representation theory of sln-modules, and we expect
that similar ideas can be used to build more such families.

Throughout this section, K will denote a field that is either finite or finite over
Q. Let n be a positive integer such that if char(K) = p > 0 then p ∤ (n + 1). Let
L = sln+1(K), the simple Lie algebra of type An, and letM be a finite-dimensional
simple L-module. The Lie module operation is a K-bilinear map, ⟨t| : L×M ↣M ,
and δ = (δ2, δ1, δ0) is a derivation of t if, for all x ∈ L and v ∈M ,

δ0⟨t|x, v⟩ = ⟨t|δ1x, v⟩+ ⟨t|x, δ2v⟩.(4.1)

Equivalently, we could construct from t a trilinear form, giving rise to a natural
bijection between the derivations in (4.1) and the derivations defined in Section 1.

Lemma 4.2. Der(t) contains a simple subalgebra isomorphic to sln+1(K).

Proof. Since M is an L-module, it follows that for all v ∈M and x, y ∈ L,

⟨t|xy, v⟩ = (xy)v = x(yv)− y(xv) = x⟨t|y, v⟩ − ⟨t|y, xv⟩.

Therefore, L embeds into Der(t), and the lemma follows since L ∼= sln+1(K). □

The simple L-module M contains a unique vector of highest weight λ. We write
M = V (λ) if M is an L-module with highest weight λ, where λ is a partition with
n parts, possibly equal to 0. Write λ = (λ1, . . . , λn) ⊢ m if

∑
i λi = m. We need

to determine the number of irreducible submodules of V (λ) ⊗ V (µ) isomorphic to
V (ν), which are the Littlewood–Richardson numbers for type A, denoted by cνλ,µ.
These numbers can be computed by algorithms on Young tableaux, similar to the
well-known gln case. We follow closely the notation used in [20].

We denote by Y a Young diagram of type λ ⊢ m. Let B(Y) be the set of semi-
standard Young tableaux obtained by filling in the boxes of the diagram Y with
integers [n+1] such that each row is weakly increasing and each column is strictly
increasing. A tableau is standard if the integers 1 through m appear once.

TENSOR ISOMORPHISM BY CONJUGACY OF LIE ALGEBRAS 11

For a Young diagram Y of type λ = (λ1, . . . , λn), define a new Young diagram

Y [j] =

{
(λ1, . . . , λj + 1, . . . , λn) j ⩽ n,
(λ1 − 1, . . . , λn − 1) j = n+ 1.

(4.3)

For m ⩾ 2, we define Y [b1, . . . , bm−1, bm] recursively so that

Y [b1, . . . , bm−1, bm] = Y [b1, . . . , bm−1][bm],

provided Y [b1, . . . , bi] is a Young diagram for all i ∈ [m − 1]. The next theorem
states how this operation can be used to determine cνλ,µ.

For a Young diagram of type λ with n parts, (a basis of) the weight space
decomposition of V (λ) corresponds to the set B(Y). We abuse notation and identify
the two, working with tableaux instead. So we write B(Y) ⊕ B(Y ′), the disjoint
union of tableaux, for the module V (λ)⊕ V (λ′).

Theorem 4.4 ([20, Theorem 8.6.6]). Let λ and µ be partitions with n parts, and let
Y and Y ′ be the corresponding Young diagrams. Then there exists an isomorphism
of sln+1-modules

B(Y)⊗ B(Y ′) ∼=
⊕

b1⊗···⊗bm∈B(Y ′)

B(Y [b1, . . . , bm]).

Note, if Y [b1, . . . , bm] is not a Young diagram, then B(Y [b1, . . . , bm]) = 0.

Proposition 4.5. With n ⩾ 1, set µ = (2, 1, . . . , 1) ⊢ n+ 1. If λ = (λ1, . . . , λn) is
a partition, then cλλ,µ = |{λi | 1 ⩽ i ⩽ n, λi > 0}|.

Proof. Write λ = (n1, . . . , n1, n2, . . . , n2, . . . , nk, . . . , nk) for some k ⩽ n, where
ni > ni+1 for i ∈ [k − 1]. Let Y and Y ′ be the Young diagrams corresponding
to λ and µ respectively. We count the number of summands equal to B(Y) in
B(Y)⊗B(Y ′). From Theorem 4.4 these correspond to tableaux T := b1⊗· · ·⊗bn+1 ∈
B(Y ′) such that Y [b1, . . . , bn+1] = Y . The latter condition implies that T is a
standard Young tableau of type µ = (2, 1, . . . , 1), so b2 = 1 ̸= b1.

If nk = 0, since b1 ̸= n+1 there are k−1 choices for b1 such that Y [b1] is a Young
tableau. If nk > 0, there are k choices for b1. Since 1 = b2 < b3 < · · · < bn+1 ⩽ n+1,
the remaining bi in both cases are uniquely determined. Thus, cλλ,µ ∈ {k − 1, k}
depending only on whether nk = 0 or nk > 0; the result follows. □

Using these results we can now build families of tensors with 1-dimensional
densors. If m is another positive integer, let d(m,n) be the number of divisors of
m no larger than n.

Theorem 4.6. For any K there are infinitely many positive integers n such that,
for all positive integers m, there are at least d(m,n) pairwise non-isomorphic K-
tensors with 1-dimensional densor space.

Proof. Set L = sln+1(K). By Lemma 4.2, Der(t) contains a simple subalgebra
D ⩽ Der(t) isomorphic to L. Setting d = x2 + x1 − x0, we consider only N (d, D)
in place of ItJ. Note that ItJ ⩽ N (d, D). We will show that dimN (d, D) = 1, so
that ItJ = N (d, D) as 0 ̸= t ∈ ItJ.

SinceM and L are irreducible L-modules, they are irreducibleD-modules. Every
tensor contained in ItJ determines a Der(t)-module homomorphism M → M ⊗ L,
which must also be a D-module homomorphism. Each irreducible L-module has
a unique vector of highest weight, so there exist partitions λ and µ such that

12 PETER A. BROOKSBANK, JOSHUA MAGLIONE, AND JAMES B. WILSON

M ∼= V (λ) and L ∼= V (µ) as D-modules. Since L is the adjoint module, µ =
(2, 1, . . . , 1) ⊢ n + 1. By irreducibility, the number of K-linearly independent D-
module homomorphisms M → M ⊗ L is equal to the generalized Littlewood–
Richardson number for type A, namely cλλ,µ. Form ⩾ 1 and for all positive integers ℓ

such that ℓ | m and ℓ ⩽ n, let λ ⊢ m with parts of size ℓ and 0. From Proposition 4.5,
cλλ,µ = 1. There are at least d(m,n) such partitions λ, which proves the theorem. □

5. Proof of Theorem 1.4

Let t ∈ (V1⊗ · · ·⊗Vℓ)∗ be nondegenerate, and assume L := Der(t) is reductive.

First we show that if some Va is non-simple as an L-module then dimItJ > 1.
Suppose, for some a ∈ [ℓ], that Ua is a proper nontrivial L-submodule of Va. Let
e : Va → Va be an idempotent with kernel Ua, and set ⟨s|v⟩ = ⟨t|v1, . . . , eva, . . . , vℓ⟩.
Since L is reductive, the image of e is an L-module complement to Ua. Thus, for
each δ ∈ L, eδa = δae. It follows that L ⊆ Der(s), and hence that s ∈ ItJ. Because
Ua is nontrivial and proper, s is nonzero and degenerate. Since t is nondegenerate,
s and t are linearly independent vectors so dimItJ > 1.

Next, let t1, t2 ∈ (V1 ⊗ · · · ⊗ Vℓ)
∗ be two nondegenerate tensors having 1-

dimensional densor spaces. We apply Algorithm 1 to test for isomorphism.
First, the derivation algebras Li := Der(ti) (Line 1) are constructed in polyno-

mial time by solving a linear system. By assumption, each Li is reductive which
allows us to decompose Li = Mi1 ⊕ · · · ⊕Miri into nontrivial minimal ideals (see
[23, Theorem 1] and the more general finite field case discussed in [23, pp. 211–212]).
If r1 ̸= r2, then Der(t1) is not conjugate to Der(t2).

As dimItiJ = 1, for each a ∈ [ℓ], Va is a simple Li-module (i = 1, 2). So we may
apply Theorem 1.3 to construct φa ∈ GL(Va) such that (L1|Va

)φa = L2|Va
. The

action of Li = Mi1 ⊕ · · · ⊕Miri on V1 ⊗ · · · ⊗ Vℓ satisfies the property in (3.4), so
setting φ := φ1 ⊗ · · · ⊗φℓ, gives L

φ
1 = L2 in End((V1 ⊗ · · · ⊗ Vℓ)

∗). This completes
Line 2 of Algorithm 1.

Since dimItiJ = 1, we do not need to induce images of normalizers. Therefore,
we proceed to Line 4, where the task is merely to decide if tφ1 = λt2 for some scalar
λ. This is settled by solving a tiny linear equation, so the result follows. □

Remark 5.1. Theorem 1.4 decides isomorphism within the family of tensors in
Theorem 4.6 in polynomial time, but we are aware of no other sub-exponential
isomorphism tests for this family. For instance, if t is a tensor in this family,
a consequence of the construction is that Adj(t) ∼= K. Thus, the adjoint-tensor
method is no better than brute force for this family of tensors.

6. Further results

There are a number of similar results attainable by modest adaptation of our
methods. We are careful to avoid constructing N(Der(t)) for general fields K, since
K× may not have a finite generating set. When K is finite, however, we can give
generators for K× and, consequently, also for N(Der(t)).

Theorem 6.1. Let K be a finite field with K = 6K, and let t ∈ (Kd1 ⊗ · · · ⊗
Kdℓ)∗ satisfy the hypotheses of Theorem 1.4. In polynomial time one can construct
generators for the group Aut(t).

TENSOR ISOMORPHISM BY CONJUGACY OF LIE ALGEBRAS 13

When dimItJ > 1 it is still possible that Der(t) is reductive and irreducible on
each Va. In that case we are left to search the orbit of N(Der(t)) acting on ItJ.

When Der(t) is represented reducibly on the Va, one is confronted with famil-
iar difficulties when matching simple factors. Indeed, Grochow has shown that a
general solution to the conjugacy problem for semisimple Lie algebras over any
field requires solving Graph Isomorphism [17]. However, this obstruction is not so
formidable when the number of simple Der(t)-modules is bounded.

The situation when Der(t) has a noncentral nil radical is worse. Indeed, the
existence of radicals is a problem even for associative algebras [10]. Although the
presence of a flag suggests that an inductive process may succeed, all actions must
also normalize the radical. This extra condition is itself a tensor isomorphism
problem, but now involving tensors that arise as the product of the nil radical. It
is not known if this case is as hard as the general case of tensor isomorphism, but
certainly no efficient solution is known.

Although the derivation algebras of tensors over fields of positive characteristic
are restricted Lie algebras, they can have (nonabelian) simple factors that are not
of Chevalley type. For example, let A = Fp[x]/(x

p), for a prime p, and define
⟨t| : A2 ×A2 ↣ A via

⟨t|(a, b), (x, y)⟩ = ay − bx.

This tensor can also be interpreted as the commutator of the Heisenberg group
H(A). The derivation algebra of t is isomorphic to Der(A) ⊕ sl2(A) ⊕ A2, where
Der(A) is the simple p-dimensional Jacobson–Witt Lie algebra of derivations of
A. Over Fp, the tensor appears to have a 1-dimensional densor subspace for some
small primes. By Corollary 3.8, we can extend Theorem 1.4 to a broader class, C,
of restricted Lie algebras, provided we have a polynomial-time algorithms to decide
pseudo-isomorphism of simple modules over simple Lie algebras in C.

We have implemented prototypes of our algorithms in the Magma system [2].
They are publicly available within software packages for effective computation with
tensors [7].

Acknowledgements. We thank W.A. de Graaf and J. Grochow for answers to
questions about the conjugacy of Lie matrix algebras. We also thank the Hausdorff
Institute for Mathematics trimester on Logic and Algorithms in Group Theory and
The Newton Institute special program on Groups, representations and applications
where some of this research was undertaken. Finally, we thank the anonymous
referee for suggesting improvements to the exposition.

References

[1] John Bamberg, Stephen P. Glasby, Luke Morgan, and Alice C. Niemeyer, Maximal linear

groups induced on the Frattini quotient of a p-group, J. Pure Appl. Algebra 222 (2018),
no. 10, 2931–2951. MR3795627 ↑1

[2] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The
user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and
number theory (London, 1993). MR1484478 ↑13

[3] P. A. Brooksbank, Y. Li, Y. Qiao, and J. B. Wilson, Improved Algorithms for Alternating

Matrix Space Isometry: From Theory to Practice, 28th Annual European Symposium on
Algorithms (ESA 2020), 2020, pp. 26:1–26:15. ↑1

14 PETER A. BROOKSBANK, JOSHUA MAGLIONE, AND JAMES B. WILSON

[4] P. A. Brooksbank and E. M. Luks, Testing isomorphism of modules, J. Algebra 320 (2008),

no. 11, 4020–4029. MR2464805 ↑4
[5] P. A. Brooksbank, J. Maglione, and J. B. Wilson, Exact sequences of inner automorphisms

of tensors, J. Algebra 545 (2020), 43–63. MR4044688 ↑3, 6
[6] , A fast isomorphism test for groups whose Lie algebra has genus 2, J. Algebra 473

(2017), 545–590. MR3591162 ↑3, 4
[7] , TensorSpace, GitHub, 2020. https://thetensor-space.github.io/softwaretools.

↑13
[8] P. A. Brooksbank, E. A. O’Brien, and J. B. Wilson, Testing isomorphism of graded algebras,

Trans. Amer. Math. Soc. 372 (2019), no. 11, 8067–8090. ↑1
[9] Peter A. Brooksbank and James B. Wilson, Computing isometry groups of Hermitian maps,

Trans. Amer. Math. Soc. 364 (2012), no. 4, 1975–1996. MR2869196 ↑4
[10] P. A. Brooksbank and J. B. Wilson, Groups acting on tensor products, J. Pure Appl. Algebra

218 (2014), no. 3, 405–416. MR3124207 ↑3, 4, 13
[11] , The module isomorphism problem reconsidered, J. Algebra 421 (2015), 541–559.

MR3272396 ↑4, 7, 9
[12] W. A. de Graaf, Lie algebras: theory and algorithms, North-Holland Mathematical Library,

vol. 56, North-Holland Publishing Co., Amsterdam, 2000. MR1743970 ↑7
[13] Bettina Eick, C. R. Leedham-Green, and E. A. O’Brien, Constructing automorphism groups

of p-groups, Comm. Algebra 30 (2002), no. 5, 2271–2295. MR1904637 ↑1
[14] U. First, J. Maglione, and J. B. Wilson, A spectral theory for transverse tensor operators.

arXiv:1911.02518. ↑2, 5, 6
[15] Saul D. Freedman, On p-groups with automorphism groups related to the exceptional Cheval-

ley groups, Comm. Algebra 48 (2020), no. 10, 4281–4319. MR4127120 ↑1
[16] S. P. Glasby, Frederico A. M. Ribeiro, and Csaba Schneider, Duality between p-groups with

three characteristic subgroups and semisimple anti-commutative algebras, Proc. Roy. Soc.
Edinburgh Sect. A 150 (2020), no. 4, 1827–1852. MR4122437 ↑1

[17] J. Grochow, Symmetry and equivalence relations in classical and geometric complexity theory,
Ph.D. Thesis, The University of Chicago, 2012. ↑4, 7, 10, 13

[18] J. Grochow and Y. Qiao, On the Complexity of Isomorphism Problems for Tensors, Groups,

and Polynomials I: Tensor Isomorphism-Completeness, 12th Innovations in Theoretical Com-
puter Science Conference (ITCS 2021), 2021, pp. 31:1–31:19. ↑2

[19] Derek F. Holt and Sarah Rees, Testing modules for irreducibility, J. Austral. Math. Soc. Ser.

A 57 (1994), no. 1, 1–16. MR1279282 ↑9
[20] J. Hong and S.-J. Kang, Introduction to quantum groups and crystal bases, Grad. Studies in

Math., vol. 42, Amer. Math. Soc., Providence, RI, 2002. MR1881971 ↑10, 11
[21] J. E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in

Math., vol. 9, Springer-Verlag, New York-Berlin, 1978. MR499562 ↑7
[22] G. Ivanyos and Y. Qiao, Algorithms based on ∗-algebras, and their applications, SIAM J.

Comput. 48 (2019), no. 3, 926–963. MR3945816 ↑4
[23] G. Ivanyos, L. Rónyai, and J. Schicho, Splitting full matrix algebras over algebraic number

fields, J. Algebra 354 (2012), no. 1, 211 – 223. ↑9, 12
[24] Mark Lewis and James B. Wilson, Isomorphism in expanding families of indistinguishable

groups, Groups Complex. Cryptol. 4 (2012), no. 1, 73–110. MR2921156 ↑3, 4
[25] Y. Li and Y. Qiao, Linear Algebraic Analogues of the Graph Isomorphism Problem and the

Erdős-Rényi Model, 58th IEEE Symp. Found. of Comp. Sci., 2017, pp. 463–474. ↑1
[26] K. Magaard and R. A. Wilson, Algorithmic construction of Chevalley bases, LMS J. Comput.

Math. 15 (2012), 436–443. MR3015735 ↑7
[27] Joshua Maglione, Filters compatible with isomorphism testing, Journal of Pure and Applied

Algebra 225 (2021), no. 3, 106528. ↑1
[28] E. A. O’Brien, Isomorphism testing for p-groups, J. Symbolic Comput. 17 (1994), no. 2, 131,

133–147. MR1283739 ↑1
[29] Lajos Rónyai, Computations in associative algebras, Groups and computation (New

Brunswick, NJ, 1991), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 11, Amer.
Math. Soc., Providence, RI, 1993, pp. 221–243. MR1235805 ↑9

[30] A. J. E. Ryba, Computer construction of split Cartan subalgebras, J. Algebra 309 (2007),
455-483. MR2303188 ↑7

https://thetensor-space.github.io/softwaretools
https://arxiv.org/abs/1911.02518

TENSOR ISOMORPHISM BY CONJUGACY OF LIE ALGEBRAS 15

[31] James B. Wilson, More characteristic subgroups, Lie rings, and isomorphism tests for p-

groups, J. Group Theory 16 (2013), no. 6, 875–897. MR3198722 ↑1
[32] J. B. Wilson, On automorphisms of groups, rings, and algebras, Comm. Algebra 45 (2017),

no. 4, 1452–1478. MR3576669 ↑3, 4, 5

Department of Mathematics, Bucknell University, Lewisburg, PA 17837

Email address: pbrooksb@bucknell.edu

Department of Mathematics, Otto von Guericke University Magdeburg, 39106 Magde-

burg, Germany

Email address: joshua.maglione@ovgu.de

Department of Mathematics, Colorado State University, Fort Collins, CO 80523

Email address: James.Wilson@ColoState.Edu

	1. Introduction
	1.1. Tensor isomorphism
	1.2. The derivation-densor method
	1.3. Using the derivation-densor method

	2. Algebraic tensor compression
	2.1. The adjoint-tensor method
	2.2. A broader view
	2.3. The derivation-densor method

	3. Deciding pseudo-isomorphism of simple Lie modules
	3.1. Three illustrations
	3.2. Tensor decompositions of simple Lie modules
	3.3. Proof of Theorem 1.3

	4. Families of densors with prescribed dimensions
	5. Proof of Theorem 1.4
	6. Further results
	Acknowledgements

	References

